Hydrocarbon Accumulation Characteristics in Cretaceous System Hailaer Basin

2013 ◽  
Vol 652-654 ◽  
pp. 2496-2500
Author(s):  
Ying Hua Yu ◽  
Hong Qi Yuan ◽  
Xiang Li Zhong ◽  
Xue Qiu

Based on the sequence stratigraphy principle, reservoir forming elements has been detailed analysis in Cretaceous system of Hailaer basin, by using core, logging and 3-D seismic data. The study shows that the thick mudstone layer in the transgressive systems tract of the super-sequence is good regional source rock .and regional caprock, meanwhile the sandbody developed in transgressive systems tract and highstand systems of the super-sequence become the regional reservoir of depression. The main hydrocarbon migration pathway is uncomformable surface, fault, frame-sandstone, or that the hydrocarbon born in source rock went into the sandstone of sublacustrine fan directly, and then, lithologic reservoirs was formed.

2012 ◽  
Vol 616-618 ◽  
pp. 441-449
Author(s):  
Kai Chen ◽  
Zhen Liu ◽  
Jun Hui Zhang

In order to research the application extension of the viewpoint of the four key factors controlling formation process of lithologic traps, the paper was dissected lithologic reservoir dynamically, mainly analyzing the paleo-fluid dynamics, paleo-hydrocarbon migration pathway, paleo-critical physical properties of reservoirs and paleo-sealing conditions of the traps in formation of hydrocarbon accumulation period. The results show that they recover the limited and most important factors for formation of lithologic traps and come back the formation process of lithologic traps availably, and it also can used to be evaluated low exploration basin dynamically, compositely analyzed key factors controlling formation process of lithologic traps and selected advantaged target area. The application of this methodology indicates that it could be widely used in the dynamic formation of lithologic traps and dynamical evaluation of low exploration basin in Hongliuquan area, Qaidam basin.


2013 ◽  
Vol 295-298 ◽  
pp. 2749-2752
Author(s):  
Xiao Long Luo ◽  
Liang Jie Tang

The existence of abundant hydrocarbon has been discovered in the Yakela Fault-convex, Tarim Basin, after reconstructing and superimposing for several periods. Through interpretation of 3D seismic data up to date, combined with the circumferential field geology, after comprehensively analyzing the characteristics of development on hydrocarbon migration passages and its relationship with hydrocarbon accumulation, this paper holds that it is divided into fault type, unconformity type and carrier bed type in the Yakela fault-convex. The unconformities and the carrier beds are the main lateral migration passage of gas and oil for long distance. The faults are the main vertical migration pathway of hydrocarbon, and the hydrocarbon can arrive at any strata with fault. It is significant to know the hydrocarbon migration pathways in the study area for exploration in future.


2013 ◽  
Vol 652-654 ◽  
pp. 2515-2519
Author(s):  
Ying Hua Yu ◽  
Hong Qi Yuan ◽  
Zi Xue Guo

Based on the theory of sequence stratigraphy, sequence stratigraphy framework of is established in this paper by comprehensively search of core, logging and 3-D seismic data. Zhalainuoer group in Cano Depression is divided into 5 3rd-order sequences: Sq1、Sq2、Sq3、Sq4、Sq5 from down to up. Based on the division and comparison of sequence formation, the sedimentary facies and the depositional system are proposed to study in the paper, and the main depositional systems are detailed explained. The distribution of these depositional systems is controlled by the sequence framework.


Author(s):  
A. Livsey

South Sumatra is considered a mature exploration area, with over 2500MMbbls of oil and 9.5TCF of gas produced. However a recent large gas discovery in the Kali Berau Dalam-2 well in this basin, highlights that significant new reserve additions can still be made in these areas by the re-evaluation of the regional petroleum systems, both by identification of new plays or extension of plays to unexplored areas. In many mature areas the exploration and concession award history often results in successively more focused exploration programmes in smaller areas. This can lead to an increased emphasis on reservoir and trap delineation without further evaluation of the regional petroleum systems and, in particular, the hydrocarbon charge component. The Tungkal PSC area is a good example of an area that has undergone a long exploration history involving numerous operators with successive focus on block scale petroleum geology at the expense of the more regional controls on hydrocarbon prospectivity. An improved understanding of hydrocarbon accumulation in the Tungkal PSC required both using regional petroleum systems analysis and hydrocarbon charge modelling. While the Tungkal PSC operators had acquired high quality seismic data and drilled a number of wells, these were mainly focused on improving production from the existing field (Mengoepeh). More recent exploration-driven work highlighted the need for a new look at the hydrocarbon charge history but it was clear that little work had been done in the past few year to better understand exploration risk. This paper summarises the methodology employed and the results obtained, from a study, carried out in 2014-15, to better understand hydrocarbon accumulation within the current Tungkal PSC area. It has involved integration of available well and seismic data from the current and historical PSC area with published regional paleogeographic models, regional surface geology and structure maps, together with a regional oil generation model. This approach has allowed a better understanding of the genesis of the discovered hydrocarbons and identification of areas for future exploration interest.


2021 ◽  
Vol 40 (3) ◽  
pp. 186-192
Author(s):  
Thomas Krayenbuehl ◽  
Nadeem Balushi ◽  
Stephane Gesbert

The principles and benefits of seismic sequence stratigraphy have withstood the test of time, but the application of seismic sequence stratigraphy is still carried out mostly manually. Several tool kits have been developed to semiautomatically extract dense stacks of horizons from seismic data, but they stop short of exploiting the full potential of seismo-stratigraphic models. We introduce novel geometric seismic attributes that associate relative geologic age models with seismic geomorphological models. We propose that a relative sea level curve can be derived from the models. The approach is demonstrated on a case study from the Lower Cretaceous Kahmah Group in the northwestern part of Oman where it helps in sweet-spotting and derisking elusive stratigraphic traps.


Author(s):  
Oluwatoyin Khadijat Olaleye ◽  
Pius Adekunle Enikanselu ◽  
Michael Ayuk Ayuk

AbstractHydrocarbon accumulation and production within the Niger Delta Basin are controlled by varieties of geologic features guided by the depositional environment and tectonic history across the basin. In this study, multiple seismic attribute transforms were applied to three-dimensional (3D) seismic data obtained from “Reigh” Field, Onshore Niger Delta to delineate and characterize geologic features capable of harboring hydrocarbon and identifying hydrocarbon productivity areas within the field. Two (2) sand units were delineated from borehole log data and their corresponding horizons were mapped on seismic data, using appropriate check-shot data of the boreholes. Petrophysical summary of the sand units revealed that the area is characterized by high sand/shale ratio, effective porosity ranged from 16 to 36% and hydrocarbon saturation between 72 and 92%. By extracting attribute maps of coherence, instantaneous frequency, instantaneous amplitude and RMS amplitude, characterization of the sand units in terms of reservoir geomorphological features, facies distribution and hydrocarbon potential was achieved. Seismic attribute results revealed (1) characteristic patterns of varying frequency and amplitude areas, (2) major control of hydrocarbon accumulation being structural, in terms of fault, (3) prospective stratigraphic pinch-out, lenticular thick hydrocarbon sand, mounded sand deposit and barrier bar deposit. Seismic Attributes analysis together with seismic structural interpretation revealed prospective structurally high zones with high sand percentage, moderate thickness and high porosity anomaly at the center of the field. The integration of different seismic attribute transforms and results from the study has improved our understanding of mapped sand units and enhanced the delineation of drillable locations which are not recognized on conventional seismic interpretations.


Sign in / Sign up

Export Citation Format

Share Document