Construction Technology and Organization of Jiande Yangxi Main Bridge

2013 ◽  
Vol 671-674 ◽  
pp. 1988-1992
Author(s):  
Xi Jiang ◽  
Tian Qing Yu

The Yangxi main bridge for 49+120+49 m the self-anchored suspension bridge, the main girder procedure full framing in situ girder construction, bridge tower using piecewise casting method construction, use scaffolding as construction operation platform. Main cable construction using prefabricated parallel wire strand method (PPWS), first within the plant into steel wire strand, roll in the drum on delivery to the bridge site erection points, with traction rope by stock installation in place. Saddle the fission lifting, cable clamp installed application to the calibration of jack import screw tension 420 kn, and three times repeated tension, sling the factory-made after installation in place. Can be used as the same bridge comparison and reference.

2012 ◽  
Vol 178-181 ◽  
pp. 2281-2284 ◽  
Author(s):  
Qing Tian Su ◽  
Dong Fang Wang

Self-anchored suspension bridge is a self-balancing system by anchored the main cable at each end of main girder. With complicated configuration and important rule of transferring tension in main cable to main girder, the anchorage region is one of the most critical issues during designing a self-anchored suspension bridge. It is impossible to fully understand the mechanical behavior only by spatial beam and column model but spatial refined model. Because the behavior of anchorage region is greatly influenced by its boundary condition, in this paper, reasonable length of main girder in calculation model is discussed based on the spatial refined model. The mechanical behavior of initial anchorage structure is calculated. A modified anchorage configuration is proposed according to the stresses distribution of anchorage zone. Calculation results show the modified anchorage configuration can make the force transferring smoothly and decrease the stresses of anchorage structure, and it can be referenced to similar bridges.


2011 ◽  
Vol 255-260 ◽  
pp. 1209-1213
Author(s):  
Xiang Nan Wu ◽  
Yue Xu ◽  
Wan Heng Li ◽  
Peng Liang

Anti-slipping safety factor between the main cable and saddle, deflection-to-span ratio of main girder and force in the mid-tower, which are not important factors in two-tower suspension bridge design, yet becoming dominant ones in three-tower. Moreover, these factors are all controlled by live load. Thus geometrical nonlinearity under live load for three-tower suspension bridge becomes even more significant. This paper takes Taizhou Yangtze River Bridge as the study object, and uses linear deflection theory, incremental UL formulation and total CR formulation to study the geometrical nonlinearity of various key responses of the structure under live load. It is concluded that accuracy and efficiency of total CR formulation is the highest among the three as well as the maximum error of incremental UL formulation is no more than 0.3%; however, the error of widely used linear deflection theory is 6.6%, 4.5% and -2.64% respectively, which is conservative and can not meet the requirements of sophisticated analysis.


2012 ◽  
Vol 18 (6) ◽  
pp. 1552-1559
Author(s):  
Shinichi Konno
Keyword(s):  

2021 ◽  
Author(s):  
Antonio Pol ◽  
Fabio Gabrieli ◽  
Lorenzo Brezzi

AbstractIn this work, the mechanical response of a steel wire mesh panel against a punching load is studied starting from laboratory test conditions and extending the results to field applications. Wire meshes anchored with bolts and steel plates are extensively used in rockfall protection and slope stabilization. Their performances are evaluated through laboratory tests, but the mechanical constraints, the geometry and the loading conditions may strongly differ from the in situ conditions leading to incorrect estimations of the strength of the mesh. In this work, the discrete element method is used to simulate a wire mesh. After validation of the numerical mesh model against experimental data, the punching behaviour of an anchored mesh panel is investigated in order to obtain a more realistic characterization of the mesh mechanical response in field conditions. The dimension of the punching element, its position, the anchor plate size and the anchor spacing are varied, providing analytical relationships able to predict the panel response in different loading conditions. Furthermore, the mesh panel aspect ratio is analysed showing the existence of an optimal value. The results of this study can provide useful information to practitioners for designing secured drapery systems, as well as for the assessment of their safety conditions.


2021 ◽  
Vol 182 ◽  
pp. 106663
Author(s):  
Rusong Miao ◽  
Ruili Shen ◽  
Fenglin Tang ◽  
Wei Chen ◽  
Ming Que

2013 ◽  
Vol 405-408 ◽  
pp. 1616-1622
Author(s):  
Guo Hui Cao ◽  
Jia Xing Hu ◽  
Kai Zhang ◽  
Min He

In order to research on mechanical properties of flexible suspension bridges, a geometric nonlinear analysis method was used to simulate on the experimental results, and carried on static loading test finally. In the loading test process, the deformations were measured in critical section of the suspension bridge, and displacement values of measured are compared with simulation values of the finite element simulation. Meanwhile the deformations of the main cable sag are observed under classification loading, the results show that the main cable sag increment is basically linear relationship with the increment of mid-span loading and tension from 3L/8 and 5L/8 to L/2 section, the main cable that increasing unit sag required mid-span loads and tension are gradually reduce in near L/4 and 3L/4 sections and gradually increase in near L/8 and 7L/8 sections and almost equal in near L/2, 3L/8 and 5L/8 sections. From the experimental results, the flexible suspension bridge possess good mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document