Stability Prediction during Thin-Walled Workpiece High-Speed Milling

2009 ◽  
Vol 69-70 ◽  
pp. 428-432 ◽  
Author(s):  
Qing Hua Song ◽  
Yi Wan ◽  
Shui Qing Yu ◽  
Xing Ai ◽  
J.Y. Pang

A method for predicting the stability of thin-walled workpiece milling process is described. The proposed approach takes into account the dynamic characteristics of workpiece changing with tool positions. A dedicated thin-walled workpiece representative of a typical industrial application is designed and modeled by finite element method (FEM). The workpiece frequency response function (FRF) depending on tool positions is obtained. A specific 3D stability chart (SC) for different spindle speeds and different tool positions is then elaborated by scanning the dynamic properties of workpiece along the machined direction throughout the machining process. The dynamic optimization of cutting parameters for increasing the chatter free material removal rate and surface finish is presented through considering the chatter vibration and forced vibration. The investigations are compared and verified by high speed milling experiments with flexible workpiece.

2012 ◽  
Vol 723 ◽  
pp. 196-201 ◽  
Author(s):  
Peng Nan Li ◽  
Ming Chen ◽  
Xiao Jian Kang ◽  
Li Na Zhang ◽  
Ming Zhou

In this study AISI 1045 steel of different hardness are used in high speed milling. According to Taguchi method, cutting parameters (milling speed, milling depth, feed per tooth) and workpiece hardness for the influence of high speed milling of the surface roughness are optimized. Through this study, not only the optimal cutting parameters of the minimum surface roughness is obtained, but also the main cutting parameters that effect performance in high speed milling is analysed. Researching results can be provided to guide establishment of the high speed milling process.


2011 ◽  
Vol 223 ◽  
pp. 671-678 ◽  
Author(s):  
Ming Luo ◽  
Ding Hua Zhang ◽  
Bao Hai Wu ◽  
Ming Tang

In aerospace industry, thin-walled workpieces are widely used in order to reduce the weight and to fulfill the high demands of their later applications. These workpieces are usually highly sophisticated and difficult to machine according to their geometry and material choice. In this paper, influence of material removal within the thin-walled workpiece machining operation on the dynamic properties of the workpiece and the machining process system is discussed. Aiming at learning about dynamic properties evolution during the machining operation, different milling processes of thin-walled plate are studied. Numerical simulation methods are employed in the study to investigate the dynamic properties evolution and machining stability with the material removal process in the milling process of thin-walled workpiece. The investigation results are expected to be used for designing optimized material removal sequence, which will guarantee highly material removal rate as well as highly machining accuracy of thin-walled workpiece.


2010 ◽  
Vol 431-432 ◽  
pp. 41-44
Author(s):  
Feng Xu ◽  
Jian Jun Zhu ◽  
Xiao Jun Zang ◽  
Xin Wu

At present, the lack of the optimal cutting parameters of high speed milling is the obstacle to its widely application. In this paper, the simplified and rapid optimization method is proposed on high speed milling alloy thin-walled workpiece. The normal selection method of cutting tools and cutting conditions is put forward as the precondition of parameter optimization. The acquirement method of optimal parameters is presented. The maximal critical axial depths of cut at the different cutting conditions are achieved according to chatter stability theory. The materials removal rate is selected as the optimal objective. The optimal parameters are filtrated up and validated according to the constraint conditions including machining tool, cutting tools, surface quality and precision of the parts.


2011 ◽  
Vol 188 ◽  
pp. 272-276
Author(s):  
Ai Qin Lin ◽  
Min Li Zheng ◽  
Yan Gu ◽  
C.G. Fan

High-speed cutting is a complexity and uncertainty process .The cutting parameters optimization is ambiguous. In this paper, based on the orthogonal experiment of high-speed milling aluminum alloy 7475, we use fuzzy comprehensive evaluation to optimize the parameters high-speed milling of aluminum alloy 7475 in the indication of surface roughness, cutting force, material removal rate. We have got cutting parameters optimal that is highly processing quality and productivity. Compared optimal results with orthogonal experimental results, we found that the optimal result is reliable. The study shows that fuzzy comprehensive evaluation method can optimize the parameters of high-speed milling of aluminum alloy 7475 accurately. This method has also a good application effect to other materials and great significance to guide actual production.


2016 ◽  
Vol 836-837 ◽  
pp. 161-167
Author(s):  
Anna Thouvenin ◽  
Xin Li ◽  
Ning He ◽  
Liang Li

High speed milling is one of the most commonly used machining processes in many fields of the industry. It is regarded as a simple and fast solution to achieve a high material removal rate, which allows an important production of parts. Unbalance is a problem in any machining process but becomes a considerable problem when reaching high speed machining. The vibrations due to an unbalanced tool or tool holder can result in a poor surface quality and a damaged tool. The damping of the vibrations can be achieved with a specially designed tool showing an anti-vibration clearance angle. This paper shows the influence of the anti-vibration clearance angle by a computational model and a set of experiments to see if it can reduce or suppress the vibrations due to unbalance in high speed milling.


2011 ◽  
Vol 188 ◽  
pp. 162-165
Author(s):  
Yan Xin Wang ◽  
Xian Li Liu ◽  
C.X. Yue ◽  
Fei Xiao ◽  
P. Sun

A method to identify the effect of tool overhang on vibration signal is put forward to study machining process of large hardened steel automobile mold by wavelet energy spectrum. Firstly, collect the machinery vibration signal on milling by displacement sensor, then make a wavelet transform on time signal and calculate the wavelet energy spectrum of each frequency range. Finally, extract energy value of the right frequency by the method of homogenization. It is confirmed by experimental data that this method can recognize vibration feature and abnormal condition of cutting tool in high speed milling process of hardened steel fleetly and efficiently.


Sign in / Sign up

Export Citation Format

Share Document