The Identification of Vibration Characteristics for Hardened Steel Based on Wavelet Energy Spectrum in High-Speed Milling

2011 ◽  
Vol 188 ◽  
pp. 162-165
Author(s):  
Yan Xin Wang ◽  
Xian Li Liu ◽  
C.X. Yue ◽  
Fei Xiao ◽  
P. Sun

A method to identify the effect of tool overhang on vibration signal is put forward to study machining process of large hardened steel automobile mold by wavelet energy spectrum. Firstly, collect the machinery vibration signal on milling by displacement sensor, then make a wavelet transform on time signal and calculate the wavelet energy spectrum of each frequency range. Finally, extract energy value of the right frequency by the method of homogenization. It is confirmed by experimental data that this method can recognize vibration feature and abnormal condition of cutting tool in high speed milling process of hardened steel fleetly and efficiently.

2009 ◽  
Vol 69-70 ◽  
pp. 428-432 ◽  
Author(s):  
Qing Hua Song ◽  
Yi Wan ◽  
Shui Qing Yu ◽  
Xing Ai ◽  
J.Y. Pang

A method for predicting the stability of thin-walled workpiece milling process is described. The proposed approach takes into account the dynamic characteristics of workpiece changing with tool positions. A dedicated thin-walled workpiece representative of a typical industrial application is designed and modeled by finite element method (FEM). The workpiece frequency response function (FRF) depending on tool positions is obtained. A specific 3D stability chart (SC) for different spindle speeds and different tool positions is then elaborated by scanning the dynamic properties of workpiece along the machined direction throughout the machining process. The dynamic optimization of cutting parameters for increasing the chatter free material removal rate and surface finish is presented through considering the chatter vibration and forced vibration. The investigations are compared and verified by high speed milling experiments with flexible workpiece.


Author(s):  
Hongji Zhang ◽  
Yuanyuan Ge ◽  
Hong Tang ◽  
Yaoyao Shi ◽  
Zengsheng Li

Within the scope of high speed milling process parameters, analyzed and discussed the effects of spindle speed, feed rate, milling depth and milling width on milling forces in the process of high speed milling of AM50A magnesium alloy. At the same time, the influence of milling parameters on the surface roughness of AM50A magnesium alloy has been revealed by means of the measurement of surface roughness and surface micro topography. High speed milling experiments of AM50A magnesium alloy were carried out by factorial design. Form the analysis of experimental results, The milling parameters, which have significant influence on milling force in high speed milling of AM50A magnesium alloy, are milling depth, milling width and feed speed, and the nonlinear characteristics of milling force and milling parameters. The milling force decreases with the increase of spindle in the given mill parameters. For the effects of milling parameters on surface quality of the performance, in the milling depth and feeding speed under certain conditions with the spindle speed increases the surface quality of AM50A magnesium alloy becomes better with the feed speed increases the surface quality becomes poor. When the spindle speed is greater than 12000r/min, the milling depth is less than 0.2mm, and the feed speed is less than 400mm/min, the milling surface quality can be obtained easily.


2010 ◽  
Vol 129-131 ◽  
pp. 256-260
Author(s):  
Yi Shu Hao ◽  
Chuang Hai ◽  
Xin Xing Zhu

Treating high speed milling theory as the guidance, this paper researched high speed milling process of bracket part based on UG NX. Combined with the structural features of bracket part, three dimensional model is built by UG NX CAD and machining processes are worked out after analysis. UG CAM module was applied to fabricate tool paths. At last, finite element analysis method is introduced to study the processing deformation by UG NX NASTRAN module, based on which measures to restrain processing deformations is advanced and processing sequences are optimized.


Wear ◽  
2015 ◽  
Vol 336-337 ◽  
pp. 29-42 ◽  
Author(s):  
C.Y. Wang ◽  
Y.X. Xie ◽  
Z. Qin ◽  
H.S. Lin ◽  
Y.H. Yuan ◽  
...  

Author(s):  
B. Zheng ◽  
H. D. Yu ◽  
X. Wang ◽  
X. M. Lai

Surface scratches and residual stresses inevitably appear on the surface of the component as a result of the machining process. The damage evolution of surface scratch due to the combined effect of cyclic loading and residual stresses will be significantly different from the case where only the cyclic loading is considered. In the damage evolution of surface scratch, the short crack growth is of great importance owing to its apparently anomalous behaviors compared with the long-crack growth. In this paper, the effect of the surface roughness and the residual stress on the short crack growth is studied. Firstly, the surface roughness and the residual stress of 7075-T6 aluminum alloy induced by the high speed milling process with various cutting speeds and feed rates are investigated with the experimental method. The maximum height roughness parameter is measured, which is regarded as the surface defect induced by the milling process. The residual stress on the specimen surface is measured with the X-ray diffraction. Results show that the surface roughness becomes higher with the increase of the feed rate. However, the influence of the cutting speed on the surface roughness is not significant. The residual stresses on the specimen surface are all in the compressive state. The residual stress is more compressive as the feed rate increases. The effects of the process parameters on the surface roughness and the residual stress are described by the fitted formulas. Then a modified model is built to characterize short fatigue crack growth behaviors with the consideration of the residual stress. This model is proved to provide a realistic treatment of the short crack growth, as reflected by comparison with experimental fatigue crack growth data of medium carbon steel and 7075-T6 aluminum alloy published in literature. The effect of surface roughness and residual stress caused by the milling process on the short crack growth is also investigated by using the proposed model. The growth of the scratch is nonlinear when it is subjected to the cyclic load. The compressive residual stress reduces the growth rate of the crack. The crack with larger initial surface roughness grows faster than that with smaller roughness. The correlation of surface roughness, residual stress and crack growth length is obtained by the polynomial fitting. The investigations in this paper can help the damage tolerance design of structures and improve the awareness of the effect of the residual stress and surface roughness induced by the machining process on the short crack growth.


2016 ◽  
Vol 836-837 ◽  
pp. 161-167
Author(s):  
Anna Thouvenin ◽  
Xin Li ◽  
Ning He ◽  
Liang Li

High speed milling is one of the most commonly used machining processes in many fields of the industry. It is regarded as a simple and fast solution to achieve a high material removal rate, which allows an important production of parts. Unbalance is a problem in any machining process but becomes a considerable problem when reaching high speed machining. The vibrations due to an unbalanced tool or tool holder can result in a poor surface quality and a damaged tool. The damping of the vibrations can be achieved with a specially designed tool showing an anti-vibration clearance angle. This paper shows the influence of the anti-vibration clearance angle by a computational model and a set of experiments to see if it can reduce or suppress the vibrations due to unbalance in high speed milling.


2010 ◽  
Vol 34-35 ◽  
pp. 616-620 ◽  
Author(s):  
Zhen Yu Zhao ◽  
Ying Bin Du ◽  
Lei Ming Zhang ◽  
Bai Liu

Based on the amount of tool overhang under different high speed machining experiment, the overhang length on the high speed impact of cutting force in milling process is studies. On the basis, the proposed tool overhang and optimum program are proposed in high speed milling, through the rational use of tools to improve processing capacity of the tool.


Sign in / Sign up

Export Citation Format

Share Document