Virtual Function Block Mechanism in the Cloud Manufacturing Environment

2013 ◽  
Vol 694-697 ◽  
pp. 2438-2441 ◽  
Author(s):  
Xi Vincent Wang ◽  
Xun W Xu

CManufacturing is a new manufacturing model that has evolved from Service-Oriented Architecture, networked manufacturing and CComputing. It provides intelligent, interoperable and distributed manufacturing model for the industry. This paper introduces a resource integration mechanism in the Cloud Manufacturing environment. Function Block technology is discussed from the Cloud Manufacturing perspective in detail. Next, a novel integration mechanism is proposed, namely the Virtual Function Block. Based on physical Function Blocks and software agents, Virtual Function Blocks are able to manipulate and integrate manufacturing resources via event states and data flows. During implementation, Creo Parametric was integrated as a Cloud Service with the help of VFBs to evaluate the mechanism.

Author(s):  
Xi Vincent Wang ◽  
Lihui Wang

Cloud Computing is the new enabling technology that offers centralised computing, flexible data storage, and scalable services. In the manufacturing context, it is possible to extend the Cloud technology for integrating and provisioning manufacturing facilities and capabilities in terms of Cloud services. In this paper, a function block-based integration mechanism is developed to integrate various types of manufacturing facilities. A Cloud-based architecture is also deployed to provide a service pool which maintains these facilities in terms of manufacturing services. The proposed framework and mechanisms are evaluated by implementations. In practice, it is possible to establish an integrated manufacturing environment across multiple levels with the support of manufacturing Cloud and function blocks. It provides a flexible architecture as well as adaptive and integration methodologies for the Cloud manufacturing system.


Author(s):  
Xiaoqing Frank Liu ◽  
Md Rakib Shahriar ◽  
S. M. Nahian Al Sunny ◽  
Ming C. Leu ◽  
Maggie Cheng ◽  
...  

Cyber-physical systems are gaining momentum in the domain of manufacturing. Cloud Manufacturing is also revolutionizing the manufacturing world. However, although there exist numerous physical manufacturing machines which are network-ready, very few of them are operated in a networked environment due to lack of scalability of existing cyber-physical systems. Combining the features offered by cloud manufacturing and cyber-physical systems, we develop a service-oriented architecture of scalable cyber-physical manufacturing cloud with MTConnect. A testbed of cyber-physical manufacturing cloud is being developed based on the above scalable architecture. In this system, manufacturing machines and their capabilities virtualized in a cyber-physical cloud. Manufacturing operations are represented as web services so that they are accessible across the Internet. Performance of the testbed of our cyber-physical manufacturing cloud with MTConnect is evaluated and test results show that our system achieves excellent service performance of manufacturing operations across Internet.


Author(s):  
Göran Adamson ◽  
Lihui Wang ◽  
Magnus Holm ◽  
Philip Moore

The ideas of on-demand, scalable and pay-for-usage resource-sharing in Cloud Manufacturing are steadily attracting more interest. For implementing the concept of Manufacturing-as-a-Service in a cloud environment, description models and implementation language for resources and their capabilities are required. A standardized approach for systemized virtualization, servisilisation, retrieval, selection and composition into higher levels of functionality is necessary. For the collaborative sharing and use of networked manufacturing resources there is also a need for a control approach for distributed manufacturing equipment. In this paper, the technological perspective for an adaptive cloud service-based control approach is described, and a supporting information model for its implementation. The control is realized through the use of a network of intelligent and distributable Function Block decision modules, enabling run-time manufacturing activities to be performed according to actual manufacturing conditions. The control system’s integration to the cloud service management functionality is described, as well as a feature-level capability model and the use of ontologies and the Semantic Web.


Author(s):  
Chrysostomos Zeginis ◽  
Kyriakos Kritikos ◽  
Dimitris Plexousakis

The adoption of Cloud computing in the Service Oriented Architecture (SOA) world is continuously increasing. However, as developers try to optimize their application deployment cost and performance, they may also deploy application parts redundantly on different VMs. In such heterogeneous and distributed environments, it is important to have a clear view of the system's state and its components' interrelationships. This paper aims at proposing a novel monitoring and adaptation framework for Service-based Applications (SBAs) deployed on multiple Clouds. The main functionality of this framework is the discovery of critical event patterns within monitoring event streams, leading to specific Service Level Objective (SLO) violations. Furthermore, two main meta-models are proposed for describing the SBA's components and their dependencies, and the supported adaptation actions in a specific context respectively. The proposed approach is empirically evaluated based on a real-world traffic management application.


Author(s):  
Xi Vincent Wang ◽  
Brenda N. Lopez N. ◽  
Lihui Wang ◽  
Jinhui Li ◽  
Winifred Ijomah

Waste Electrical and Electronic Equipment (WEEE) is both valuable and harmful since it contains a large number of profitable and hazardous materials and elements at the same time. At component level, many parts of the discarded equipment are still functional and recoverable. Thus it is necessary to develop a distributed and intelligent system to support WEEE recovery and recycling. In recent years, the Cloud concept has gained increasing popularity since it provides a service-oriented architecture that integrates various resources over the network. Cloud Manufacturing systems are proposed world-wide to support operational manufacturing processes. In this research, Cloud Manufacturing is further extended to the WEEE recovery and recycling context. A Cloud-based WEEE Recovery system is developed to provide modularized recovery services on the Cloud. A data management system is developed as well, which maintains the knowledge throughout the product lifecycle. A product tracking mechanism is also proposed with the help of the Quick Respond code method.


Sign in / Sign up

Export Citation Format

Share Document