Application Research on Composite Foundation of Rammed Soil-Cement Piles Applied in the Da-Guang Expressway from Gu'an to Shenzhou

2013 ◽  
Vol 740 ◽  
pp. 655-658
Author(s):  
Huan Sheng Mu ◽  
Ling Gao

Through the practice of tamped cement soil pile in treatment of soft soil foundation in Guan to Shenzhou section of Daqing-Guangzhou Expressway, the author expounds the action mechanism of rammed soil cement pile, composite foundation design points and calculation method of bearing capacity characteristic value.

2011 ◽  
Vol 335-336 ◽  
pp. 1145-1150
Author(s):  
Xiao Rong Yang ◽  
Lei Yu Zhang ◽  
Hai Chao Li ◽  
Li Ying Dong

In order to analyze the characteristics of pile-soil stress ratio of the composite foundation of cement-soil mixing pile under flexible foundation, this paper points out the displacement mode of friction pile; According to the deformation characteristic of friction pile, ascertain the neutral point of composite foundation. And this paper also derives the exact formula about length-stress ratio which addresses the problem of soft soil foundation according to the deformation co-ordination conditions of the pile composite foundation. The calculation of actual example proves that the formula about pile-soil stress ratio is in accordance with actual measurement number. The pile-soil stress ratio which addresses the problem of soft soil foundation is generally between 2~4. If other conditions keep invariable, pile-soil stress ratio become big when cushion modulus become big. Cushion modulus effect the length-stress ratio greatly.


2013 ◽  
Vol 477-478 ◽  
pp. 572-576 ◽  
Author(s):  
Cai Xia Ma

Through tests and application, analyzes influential factors & reinforcement effect and application prospects & economic benefits of cement-soil mixing composite foundation, propounds some points of view for stabilizing & reinforcement soft-soil foundation by cement-soil mixing method especially in Yinchan District combined with constructive situation


2017 ◽  
Vol 730 ◽  
pp. 463-472
Author(s):  
Dong Fan Shang ◽  
Tie Cheng Wang ◽  
Wan Ming Qiang ◽  
Lei Qiang Miao

Longxi Tower translocation project is the first case of high-rise ancient tower structure translocation on soft soil foundation in China. Foundation treatment protocol and building materials are essential to control soft soil foundation settlement. Depending on Longxi Tower translocation project, firstly this thesis analyzed and confirmed control factors that impact foundation settlement and deformation; then combing with project experience, it selected cement soil mixing pile composite foundation method to treat soft soil foundation; and finally it confirmed the optimal solution to treat cement soil mixing pile composite foundation through analyzing the settlement law of cement soil mixing pile composite foundation. The analysis indicated that cement soil mixing pile composite foundation settlement are obviously impacted by translocation speed and retention time; foundation settlement and deformation level increase as translocation speed decreases and retention time increases; in the case that foundation settlement difference is not beyond 1/1000 of half the distance of track beams at the bottom of building, a treatment solution was made by analyzing how cement soil mixing pile settlement changes as translocation speed, retention time and other factors. The result showed that this treatment solution saved 42% of project cost more than the previous design solution. The research result of this thesis could be taken as a reference for the future similar projects.


2014 ◽  
Vol 501-504 ◽  
pp. 101-106
Author(s):  
Hai Ying Hu ◽  
Yu Cheng Zhang ◽  
Zhi Xing Huang

With the background of the foundation treatment engineering of a river dam in a reservoir, the thesis introduced the site experiments for soft soil foundation reinforced by vibro-replacement stone piles. Moreover, the study had also conducted inspection and analysis of the reinforcing effect of the composite foundation being reinforced by vibro-replacement stone piles including the inspections like the stress ratio between the vibro-replacement stone pile and earth among pile and the ratio between the vibro-replacement stone pile and the pile earth. Finally, the study came to below results after comprehensively considering the results of the heavy dynamic penetration test, standard penetration test, load test, reading of earth pressure cell and etc. The reinforcement of the vibro-replacement stone piles could reach the expected reinforcement effect for the soft earth foundation. After the application of the piles, the carrying fore of the composite foundation is higher than the design requirements and the liquefaction resistance has experienced significant improvement. Moreover, this kind of composite soil foundation could effectively reduce the total settlement of the foundation, accelerate the consolidation of the foundation and improve the hydraulic conductivity of the foundation.


2012 ◽  
Vol 594-597 ◽  
pp. 527-531
Author(s):  
Wan Qing Zhou ◽  
Shun Pei Ouyang

Based on the experimental study of rotary filling piles with large diameter subjected to axial load in deep soft soil, the bearing capacity behavior and load transfer mechanism were discussed. Results show that in deep soft soil foundation, the super–long piles behave as end-bearing frictional piles. The exertion of the shaft resistance is not synchronized. The upper layer of soil is exerted prior to the lower part of soil. Meanwhile, the exertion of shaft resistance is prior to the tip resistance. For the different soil and the different depth of the same layer of soil, shaft resistance is different.


Sign in / Sign up

Export Citation Format

Share Document