Does Complex Metaheuristic Out-Perform Simple Hill-Climbing for Optimization Problems? A Simulation Evaluation

2013 ◽  
Vol 748 ◽  
pp. 666-669 ◽  
Author(s):  
Xing Wen Zhang

In this paper we compare the performance of metaheuristic methods, namely simulated annealing and Tabu Search, against simple hill climbing heuristic on a supply chain optimization problem. The benchmark problem we consider is the retailer replenishment optimization problem for a retailer selling multiple products. Computation and simulation results demonstrate that simulated annealing and Tabu search improve solution quality. However, the performance improvement is less in simulations with random noise. Lastly, simulated annealing appears to be more robust than Tabu search, and the results justify its extra implementation effort and computation time when compared against hill climbing.

2007 ◽  
Vol 16 (03) ◽  
pp. 537-544 ◽  
Author(s):  
ANDREW LIM ◽  
BRIAN RODRIGUES ◽  
FEI XIAO

We propose a simple and direct node shifting method with hill climbing for the well-known matrix bandwidth minimization problem. Many heuristics have been developed for this NP-complete problem including the Cuthill-McKee (CM) and the Gibbs, Poole and Stockmeyer (GPS) algorithms. Recently, heuristics such as Simulated Annealing, Tabu Search and GRASP have been used, where Tabu Search and the GRASP with Path Relinking achieved significantly better solution quality than the CM and GPS algorithms. Experimentation shows that our method achieves the best solution quality when compared with these while being much faster than newly-developed algorithms.


2011 ◽  
Vol 421 ◽  
pp. 559-563
Author(s):  
Yong Chao Gao ◽  
Li Mei Liu ◽  
Heng Qian ◽  
Ding Wang

The scale and complexity of search space are important factors deciding the solving difficulty of an optimization problem. The information of solution space may lead searching to optimal solutions. Based on this, an algorithm for combinatorial optimization is proposed. This algorithm makes use of the good solutions found by intelligent algorithms, contracts the search space and partitions it into one or several optimal regions by backbones of combinatorial optimization solutions. And optimization of small-scale problems is carried out in optimal regions. Statistical analysis is not necessary before or through the solving process in this algorithm, and solution information is used to estimate the landscape of search space, which enhances the speed of solving and solution quality. The algorithm breaks a new path for solving combinatorial optimization problems, and the results of experiments also testify its efficiency.


2005 ◽  
Vol 9 (2) ◽  
pp. 149-168 ◽  
Author(s):  
A. Misevičius

In this paper, we present an improved hybrid optimization algorithm, which was applied to the hard combinatorial optimization problem, the quadratic assignment problem (QAP). This is an extended version of the earlier hybrid heuristic approach proposed by the author. The new algorithm is distinguished for the further exploitation of the idea of hybridization of the well‐known efficient heuristic algorithms, namely, simulated annealing (SA) and tabu search (TS). The important feature of our algorithm is the so‐called “cold restart mechanism”, which is used in order to avoid a possible “stagnation” of the search. This strategy resulted in very good solutions obtained during simulations with a number of the QAP instances (test data). These solutions show that the proposed algorithm outperforms both the “pure” SA/TS algorithms and the earlier author's combined SA and TS algorithm. Key words: hybrid optimization, simulated annealing, tabu search, quadratic assignment problem, simulation.


Author(s):  
Arslan Ali Syed ◽  
Irina Gaponova ◽  
Klaus Bogenberger

The majority of transportation problems include optimizing some sort of cost function. These optimization problems are often NP-hard and have an exponential increase in computation time with the increase in the model size. The problem of matching vehicles to passenger requests in ride hailing (RH) contexts typically falls into this category.Metaheuristics are often utilized for such problems with the aim of finding a global optimal solution. However, such algorithms usually include lots of parameters that need to be tuned to obtain a good performance. Typically multiple simulations are run on diverse small size problems and the parameters values that perform the best on average are chosen for subsequent larger simulations.In contrast to the above approach, we propose training a neural network to predict the parameter values that work the best for an instance of the given problem. We show that various features, based on the problem instance and shareability graph statistics, can be used to predict the solution quality of a matching problem in RH services. Consequently, the values corresponding to the best predicted solution can be selected for the actual problem. We study the effectiveness of above described approach for the static assignment of vehicles to passengers in RH services. We utilized the DriveNow data from Bavarian Motor Works (BMW) for generating passenger requests inside Munich, and for the metaheuristic, we used a large neighborhood search (LNS) algorithm combined with a shareability graph.


2013 ◽  
Vol 651 ◽  
pp. 879-884
Author(s):  
Qi Wang ◽  
Ying Min Wang ◽  
Yan Ni Gou

The matched field processing (MFP) for localization usually needs to match all the replica fields in the observation sea with the received fields, and then find the maximum peaks in the matched results, so how to find the maximum in the results effectively and quickly is a problem. As known the classical simulated annealing (CSA) which has the global optimization capability is used widely for combinatorial optimization problems. For passive localization the position of the source can be recognized as a combinatorial optimization problem about range and depth, so a new matched field processing based on CSA is proposed. In order to evaluate the performance of this method, the normal mode was used to calculate the replica field. Finally the algorithm was evaluated by the dataset in the Mediterranean Sea in 1994. Comparing to the conventional matched field passive localization (CMFP), it can be conclude that the new one can localize optimum peak successfully where the output power of CMFP is maximum, meanwhile it is faster than CMFP.


1992 ◽  
Vol 02 (02) ◽  
pp. 159-185 ◽  
Author(s):  
L. TAO ◽  
Y.C. ZHAO ◽  
K. THULASIRAMAN ◽  
M.N.S. SWAMY

For a given graph G with vertex and edge weights, we partition the vertices into subsets to minimize the total weights for edges crossing the subsets (weighted cut size) under the constraint that the vertex weights are evenly distributed among the subsets. We propose two new effective graph partition algorithms based on simulated annealing and tabu search, and compare their performance with that of the LPK algorithm reported in Ref. 12. Extensive experimental study shows that both of our new algorithms produce significantly better solutions than the LPK algorithm (maximal and minimal improvements on average weighted cut size are roughly 51.8% and 10.5% respectively) with longer running time, and this advantage in solution quality would not change even if we run the LPK algorithm repeatedly with random initial solutions in the same time frame as required by our algorithms.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
L. M. Rasdi Rere ◽  
Mohamad Ivan Fanany ◽  
Aniati Murni Arymurthy

A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN), a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent).


2018 ◽  
Vol 12 (11) ◽  
pp. 366 ◽  
Author(s):  
Issam AlHadid ◽  
Khalid Kaabneh ◽  
Hassan Tarawneh

Simulated Annealing (SA) is a common meta-heuristic algorithm that has been widely used to solve complex optimization problems. This work proposes a hybrid SA with EMC to divert the search effectively to another promising region. Moreover, a Tabu list memory applied to avoid cycling. Experimental results showed that the solution quality has enhanced using SA-EMCQ by escaping the search space from local optimum to another promising region space. In addition, the results showed that our proposed technique has outperformed the standard SA and gave comparable results to other approaches in the literature when tested on ITC2007-Track3 university course timetabling datasets.


2015 ◽  
Vol 15 (2) ◽  
pp. 6471-6479
Author(s):  
Francisca Rosario ◽  
Dr. K. Thangadurai

In the process of physical annealing, a solid is heated until all particles randomly arrange themselves forming the liquid state. A slow cooling process is then used to crystallize the liquid. This process is known as simulated annealing. Simulated annealing is stochastic computational technique that searches for global optimum solutions in optimization problems. The main goal here is to give the algorithm more time in the search space exploration by accepting moves, which may degrade the solution quality, with some probability depending on a parameter called temperature. In this discussion the simulated annealing algorithm is implemented in pest and weather data set for feature selection and it reduces the dimension of the attributes through specified iterations.


Author(s):  
Renjing Gao ◽  
Yi Tang ◽  
Qi Wang ◽  
Shutian Liu

Abstract This paper presents a gradient-based optimization method for interference suppression of linear arrays by controlling the electrical parameters of each array element, including the amplitude-only and phase-only. Gradient-based optimization algorithm (GOA), as an efficient optimization algorithm, is applied to the optimization problem of the anti-interference arrays that is generally solved by the evolutionary algorithms. The goal of this method is to maximize the main beam gain while minimizing the peak sidelobe level (PSLL) together with the null constraint. To control the nulls precisely and synthesize the radiation pattern accurately, the full-wave method of moments is used to consider the mutual coupling among the array elements rigorously. The searching efficiency is improved greatly because the gradient (sensitivity) information is used in the algorithm for solving the optimization problem. The sensitivities of the design objective and the constraint function with respect to the design variables are analytically derived and the optimization problems are solved by using GOA. The results of the GOA can produce the desired null at the specific positions, minimize the PSLL, and greatly shorten the computation time compared with the often-used non-gradient method such as genetic algorithm and cuckoo search algorithm.


Sign in / Sign up

Export Citation Format

Share Document