university course timetabling
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 48)

H-INDEX

23
(FIVE YEARS 2)

2022 ◽  
Vol 12 (2) ◽  
pp. 542
Author(s):  
Martín H. Cruz-Rosales ◽  
Marco Antonio Cruz-Chávez ◽  
Federico Alonso-Pecina ◽  
Jesus del C. Peralta-Abarca ◽  
Erika Yesenia Ávila-Melgar ◽  
...  

This work presents a metaheuristic with distributed processing that finds solutions for an optimization model of the university course timetabling problem, where collective communication and point-to-point communication are applied, which are used to generate cooperation between processes. The metaheuristic performs the optimization process with simulated annealing within each solution that each process works. The highlight of this work is presented in the algorithmic design for optimizing the problem by applying cooperative processes. In each iteration of the proposed heuristics, collective communication allows the master process to identify the process with the best solution and point-to-point communication allows the best solution to be sent to the master process so that it can be distributed to all the processes in progress in order to direct the search toward a space of solutions which is close to the best solution found at the time. This search is performed by applying simulated annealing. On the other hand, the mathematical representation of an optimization model present in the literature of the university course timing problem is performed. The results obtained in this work show that the proposed metaheuristics improves the results of other metaheuristics for all test instances. Statistical analysis shows that the proposed metaheuristic presents a different behavior from the other metaheuristics with which it is compared.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mozhgan Mokhtari ◽  
Majid Vaziri Sarashk ◽  
Milad Asadpour ◽  
Nadia Saeidi ◽  
Omid Boyer

Over recent years, timetable programming in academic settings has become particularly challenging due to such factors as the growing number of students, the variety of lectures, the inadequacy of educational facilities in some areas, and the incorporation of teachers and students’ preferences into the schedule. Many researchers, therefore, have been formulating the problem of timetabling lectures using different methods. In this research, a multiobjective mixed-integer programming model was developed to provide a timetable for the postgraduate courses at the Industrial Engineering Department of Islamic Azad University, Najafabad Branch (IAUN). The proposed model minimized the violation of the lecturers and educational priorities, the student travel time between classes, and the classes’ surplus capacity. To convert the multiobjective model into a single one, the ε-constraint method was adopted, and the model’s accuracy and feasibility were examined through a real example solved by the CPLEX solver of GAMS software. The results approved the efficiency of this model in preparing a timetable for university lectures.


2021 ◽  
Vol 18 (4(Suppl.)) ◽  
pp. 1465
Author(s):  
Zahid Iqbal ◽  
Rafia Ilyas ◽  
Huah Yong Chan ◽  
Naveed Ahmed

The university course timetable problem (UCTP) is typically a combinatorial optimization problem. Manually achieving a useful timetable requires many days of effort, and the results are still unsatisfactory. unsatisfactory. Various states of art methods (heuristic, meta-heuristic) are used to satisfactorily solve UCTP. However, these approaches typically represent the instance-specific solutions. The hyper-heuristic framework adequately addresses this complex problem. This research proposed Particle Swarm Optimizer-based Hyper Heuristic (HH PSO) to solve UCTP efficiently. PSO is used as a higher-level method that selects low-level heuristics (LLH) sequence which further generates an optimal solution. The proposed approach generates solutions into two phases (initial and improvement). A new LLH named “least possible rooms left” has been developed and proposed to schedule events. Both datasets of international timetabling competition (ITC) i.e., ITC 2002 and ITC 2007 are used to evaluate the proposed method. Experimental results indicate that the proposed low-level heuristic helps to schedule events at the initial stage. When compared with other LLH’s, the proposed LLH schedule more events for 14 and 15 data instances out of 24 and 20 data instances of ITC 2002 and ITC 2007, respectively. The experimental study shows that HH PSO gets a lower soft constraint violation rate on seven and six data instances of ITC 2007 and ITC 2002, respectively. This research has concluded the proposed LLH can get a feasible solution if prioritized.


Author(s):  
Carlos Bazilio ◽  
Dalessandro Soares Vianna ◽  
Thiago Jeffery Barisao de Lima ◽  
Edwin Benito Mitacc Meza

This work proposes a collaborative approach for solving the university course timetabling problem (UCTP). A prototype was developed and used for a computer sciencecourse at the Federal Fluminense University in Brazil. The main idea is that students, professors, and course coordinators contribute collaboratively to course timetabling through an app. These contributions employ heuristics, which is responsible for timetabling to improve the solution to the problem. Results and future works are described herein.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2500
Author(s):  
Nancy M. Arratia-Martinez ◽  
Paulina A. Avila-Torres ◽  
Juana C. Trujillo-Reyes

The purpose of this research is to solve the university course timetabling problem (UCTP) that consists of designing a schedule of the courses to be offered in one academic period based on students’ demand, faculty composition and institutional constraints considering the policies established in the standards of the Association to Advance Collegiate Schools of Business (AACSB) accreditation. These standards involve faculty assignment with high level credentials that have to be fulfilled for business schools on the road to seek recognition and differentiation while providing exceptional learning. A new mathematical model for UCTP is proposed. The model allows the course-section-professor-time slot to be assigned for an academic department strategically using the faculty workload, course overload, and the fulfillment of the AACSB criteria. Further, the courses that will require new hires are classified according to the faculty qualifications stablished by AACSB. A real-world case is described and solved to show the efficiency of the proposed model. An analysis of different strategies derived from institutional policies that impacts the resulting timetabling is also presented. The results show the course overload could be a valuable strategy for helping mitigate the total of new hires needed. The proposed model allows to create the course at the same time the AACSB standards are met.


2021 ◽  
Vol 47 (2) ◽  
pp. 674-685
Author(s):  
Ushindi Limota ◽  
Egbert Mujuni ◽  
Allen Mushi

Many mathematical optimization problems from real-life applications are NP-hard, and hence no algorithm that solves them to optimality within a reasonable time is known. For this reason, metaheuristic methods are mostly preferred when their size is big. Many meta-heuristic methods have been proposed to solve various combinatorial optimization problems. One of the newly introduced metaheuristic methods is a bat-inspired algorithm, which is based on the echolocation behaviour of microbats. Bat algorithm (BA) and its variants have been used successfully to solve several optimization problems. However, from the No-free Lunch Theorem, it is known that there is no universal metaheuristic method that can solve efficiently all optimization problems. Thus, this study work focused on investigating the usefulness of BA in solving an optimization problem called Course Teaching Problem (CTP). Since BA was originally designed to solve continuous problems, and CTP is a combinatorial optimization problem, a discrete version of BA for CPT has been proposed and tested using real-life data from the Dar es Salaam University College of Education (DUCE). The algorithm has produced promising results, as in each execution test, it generated a timetable in which all hard constraints were met and soft constraints were significantly satisfied within a few iterations. Keywords: Combinatorial optimization, Timetabling problem, Metaheuristic algorithms, Bat algorithm.


Sign in / Sign up

Export Citation Format

Share Document