Comparison Results on Preconditioned AOR-Type Iterative Method for M-Matrices

2013 ◽  
Vol 756-759 ◽  
pp. 2629-2633
Author(s):  
Ting Zhou ◽  
Hong Fang Cui

For solving the linear system, different preconditioned iterative methods have been proposed by many authors. M-matrices appear in many areas of science and engineering. In this paper, we present preconditioned AOR-type iterative method and the SOR-type iterative method with a preconditioner for solving the M-matrices. In addition, the relation between the convergence rate of preconditioned AOR-type iterative method and the parameters are brought to light. Finally, a numerical example is also given to illustrate the results.

2014 ◽  
Vol 644-650 ◽  
pp. 1988-1991
Author(s):  
Ting Zhou

For solving the linear system, different preconditioned iterative methods have been proposed by many authors. In this paper, we present preconditioned SSOR iterative method for solving the linear systems. Meanwhile, we apply the preconditioner to H-matrix and obtain the convergence result. Finally, a numerical example is also given to illustrate our results.


2007 ◽  
Vol 49 (2) ◽  
pp. 281-292 ◽  
Author(s):  
Shiliang Wu ◽  
Tingzhu Huang

AbstractBoth Evans et al. and Li et al. have presented preconditioned methods for linear systems to improve the convergence rates of AOR-type iterative schemes. In this paper, we present a new preconditioner. Some comparison theorems on preconditioned iterative methods for solving L-matrix linear systems are presented. Comparison results and a numerical example show that convergence of the preconditioned Gauss-Seidel method is faster than that of the preconditioned AOR iterative method.


2019 ◽  
Vol 17 (1) ◽  
pp. 1764-1773
Author(s):  
Hongjuan Wang

Abstract In this paper we investigate theoretically and numerically the new preconditioned method to accelerate over-relaxation (AOR) and succesive over-relaxation (SOR) schemes, which are used to the large sparse linear systems. The iterative method that is usually measured by the convergence rate is an important method for solving large linear equations, so we focus on the convergence rate of the different preconditioned iterative methods. Our results indicate that the proposed new method is highly effective to improve the convergence rate and it is the best one in three preconditioned methods that are revealed in the comparison theorems and numerical experiment.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Xingping Sheng ◽  
Youfeng Su ◽  
Guoliang Chen

We give a modification of minimal residual iteration (MR), which is 1V-DSMR to solve the linear systemAx=b. By analyzing, we find the modifiable iteration to be a projection technique; moreover, the modification of which gives a better (at least the same) reduction of the residual error than MR. In the end, a numerical example is given to demonstrate the reduction of the residual error between the 1V-DSMR and MR.


Author(s):  
Nur Afza Mat Ali ◽  
Rostang Rahman ◽  
Jumat Sulaiman ◽  
Khadizah Ghazali

<p>Similarity method is used in finding the solutions of partial differential equation (PDE) in reduction to the corresponding ordinary differential equation (ODE) which are not easily integrable in terms of elementary or tabulated functions. Then, the Half-Sweep Successive Over-Relaxation (HSSOR) iterative method is applied in solving the sparse linear system which is generated from the discretization process of the corresponding second order ODEs with Dirichlet boundary conditions. Basically, this ODEs has been constructed from one-dimensional reaction-diffusion equations by using wave variable transformation. Having a large-scale and sparse linear system, we conduct the performances analysis of three iterative methods such as Full-sweep Gauss-Seidel (FSGS), Full-sweep Successive Over-Relaxation (FSSOR) and HSSOR iterative methods to examine the effectiveness of their computational cost. Therefore, four examples of these problems were tested to observe the performance of the proposed iterative methods.  Throughout implementation of numerical experiments, three parameters have been considered which are number of iterations, execution time and maximum absolute error. According to the numerical results, the HSSOR method is the most efficient iterative method in solving the proposed problem with the least number of iterations and execution time followed by FSSOR and FSGS iterative methods.</p>


Author(s):  
H. Saberi Najafi ◽  
S. A. Edalatpanah

In the present chapter, we give an overview of iterative methods for linear complementarity problems (abbreviated as LCPs). We also introduce these iterative methods for the problems based on fixed-point principle. Next, we present some new properties of preconditioned iterative methods for solving the LCPs. Convergence results of the sequence generated by these methods and also the comparison analysis between classic Gauss-Seidel method and preconditioned Gauss-Seidel (PGS) method for LCPs are established under certain conditions. Finally, the efficiency of these methods is demonstrated by numerical experiments. These results show that the mentioned models are effective in actual implementation and competitive with each other.


Sign in / Sign up

Export Citation Format

Share Document