scholarly journals A preconditioned AOR iterative scheme for systems of linear equations with L-matrics

2019 ◽  
Vol 17 (1) ◽  
pp. 1764-1773
Author(s):  
Hongjuan Wang

Abstract In this paper we investigate theoretically and numerically the new preconditioned method to accelerate over-relaxation (AOR) and succesive over-relaxation (SOR) schemes, which are used to the large sparse linear systems. The iterative method that is usually measured by the convergence rate is an important method for solving large linear equations, so we focus on the convergence rate of the different preconditioned iterative methods. Our results indicate that the proposed new method is highly effective to improve the convergence rate and it is the best one in three preconditioned methods that are revealed in the comparison theorems and numerical experiment.

2007 ◽  
Vol 49 (2) ◽  
pp. 281-292 ◽  
Author(s):  
Shiliang Wu ◽  
Tingzhu Huang

AbstractBoth Evans et al. and Li et al. have presented preconditioned methods for linear systems to improve the convergence rates of AOR-type iterative schemes. In this paper, we present a new preconditioner. Some comparison theorems on preconditioned iterative methods for solving L-matrix linear systems are presented. Comparison results and a numerical example show that convergence of the preconditioned Gauss-Seidel method is faster than that of the preconditioned AOR iterative method.


2013 ◽  
Vol 756-759 ◽  
pp. 2629-2633
Author(s):  
Ting Zhou ◽  
Hong Fang Cui

For solving the linear system, different preconditioned iterative methods have been proposed by many authors. M-matrices appear in many areas of science and engineering. In this paper, we present preconditioned AOR-type iterative method and the SOR-type iterative method with a preconditioner for solving the M-matrices. In addition, the relation between the convergence rate of preconditioned AOR-type iterative method and the parameters are brought to light. Finally, a numerical example is also given to illustrate the results.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Xue-Feng Zhang ◽  
Qun-Fa Cui ◽  
Shi-Liang Wu

Three kinds of preconditioners are proposed to accelerate the generalized AOR (GAOR) method for the linear system from the generalized least squares problem. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned generalized AOR (PGAOR) methods is better than that of the original GAOR methods. Finally, some numerical results are reported to confirm the validity of the proposed methods.


2021 ◽  
Vol 24 (1) ◽  
Author(s):  
Ernesto Dufrechou

Many problems, in diverse areas of science and engineering, involve the solution of largescale sparse systems of linear equations. In most of these scenarios, they are also a computational bottleneck, and therefore their efficient solution on parallel architectureshas motivated a tremendous volume of research.This dissertation targets the use of GPUs to enhance the performance of the solution of sparse linear systems using iterative methods complemented with state-of-the-art preconditioned techniques. In particular, we study ILUPACK, a package for the solution of sparse linear systems via Krylov subspace methods that relies on a modern inverse-based multilevel ILU (incomplete LU) preconditioning technique.We present new data-parallel versions of the preconditioner and the most important solvers contained in the package that significantly improve its performance without affecting its accuracy. Additionally we enhance existing task-parallel versions of ILUPACK for shared- and distributed-memory systems with the inclusion of GPU acceleration. The results obtained show a sensible reduction in the runtime of the methods, as well as the possibility of addressing large-scale problems efficiently.


2016 ◽  
Vol 13 (05) ◽  
pp. 1650024 ◽  
Author(s):  
Jin-Xiu Hu ◽  
Xiao-Wei Gao ◽  
Zhi-Chao Yuan ◽  
Jian Liu ◽  
Shi-Zhang Huang

In this paper, a new iterative method, for solving sparse nonsymmetrical systems of linear equations is proposed based on the Simultaneous Elimination and Back-Substitution Method (SEBSM), and the method is applied to solve systems resulted in engineering problems solved using Finite Element Method (FEM). First, SEBSM is introduced for solving general linear systems using the direct method. And, then an iterative method based on SEBSM is presented. In the method, the coefficient matrix [Formula: see text] is split into lower, diagonally banded and upper matrices. The iterative convergence can be controlled by selecting a suitable bandwidth of the diagonally banded matrix. And the size of the working array needing to be stored in iteration is as small as the bandwidth of the diagonally banded matrix. Finally, an accelerating strategy for this iterative method is proposed by introducing a relaxation factor, which can speed up the convergence effectively if an optimal relaxation factor is chosen. Two numerical examples are given to demonstrate the behavior of the proposed method.


2014 ◽  
Vol 644-650 ◽  
pp. 1988-1991
Author(s):  
Ting Zhou

For solving the linear system, different preconditioned iterative methods have been proposed by many authors. In this paper, we present preconditioned SSOR iterative method for solving the linear systems. Meanwhile, we apply the preconditioner to H-matrix and obtain the convergence result. Finally, a numerical example is also given to illustrate our results.


Sign in / Sign up

Export Citation Format

Share Document