An Improved Algorithm for Gesture Recognition

2013 ◽  
Vol 756-759 ◽  
pp. 3914-3919
Author(s):  
Ping Ping Chen ◽  
Ding Ying Tan ◽  
Qian Qian Xu ◽  
Qing Zhong Liang

In this paper, gesture recognition is being research which focuses on the key steps - gesture feature extraction. Also, designed and implemented a gesture feature extraction algorithm in a complex environment. The experimental test proved that the feature extraction algorithm has better real - time performance and higher recognition rate, which achieve the desired objectives.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Jingchao Li ◽  
Jian Guo

Identifying communication signals under low SNR environment has become more difficult due to the increasingly complex communication environment. Most relevant literatures revolve around signal recognition under stable SNR, but not applicable under time-varying SNR environment. To solve this problem, we propose a new feature extraction method based on entropy cloud characteristics of communication modulation signals. The proposed algorithm extracts the Shannon entropy and index entropy characteristics of the signals first and then effectively combines the entropy theory and cloud model theory together. Compared with traditional feature extraction methods, instability distribution characteristics of the signals’ entropy characteristics can be further extracted from cloud model’s digital characteristics under low SNR environment by the proposed algorithm, which improves the signals’ recognition effects significantly. The results from the numerical simulations show that entropy cloud feature extraction algorithm can achieve better signal recognition effects, and even when the SNR is −11 dB, the signal recognition rate can still reach 100%.


2011 ◽  
Vol 14 (AEROSPACE SCIENCES) ◽  
pp. 1-14
Author(s):  
A. Sallam ◽  
O. Elmowafy ◽  
R. Elbordany ◽  
A. Fahmy

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Shan Guan ◽  
Kai Zhao ◽  
Shuning Yang

This paper proposes a novel classification framework and a novel data reduction method to distinguish multiclass motor imagery (MI) electroencephalography (EEG) for brain computer interface (BCI) based on the manifold of covariance matrices in a Riemannian perspective. For method 1, a subject-specific decision tree (SSDT) framework with filter geodesic minimum distance to Riemannian mean (FGMDRM) is designed to identify MI tasks and reduce the classification error in the nonseparable region of FGMDRM. Method 2 includes a feature extraction algorithm and a classification algorithm. The feature extraction algorithm combines semisupervised joint mutual information (semi-JMI) with general discriminate analysis (GDA), namely, SJGDA, to reduce the dimension of vectors in the Riemannian tangent plane. And the classification algorithm replaces the FGMDRM in method 1 with k-nearest neighbor (KNN), named SSDT-KNN. By applying method 2 on BCI competition IV dataset 2a, the kappa value has been improved from 0.57 to 0.607 compared to the winner of dataset 2a. And method 2 also obtains high recognition rate on the other two datasets.


2021 ◽  
Vol 38 (6) ◽  
pp. 1599-1611
Author(s):  
Hong Yang ◽  
Yanming Zhao ◽  
Guoan Su ◽  
Xiuyun Liu ◽  
Songwen Jin ◽  
...  

The conventional slow feature analysis (SFA) algorithm has no support of computational theory of vision for primates, nor does it have the ability to learn the global features with visual selection consistency continuity. And what is more, the algorithm is highly complex. Based on this, Slow Feature Extraction Algorithm Based on Visual selection consistency continuity and Its Application was proposed. Inspired by the visual selection consistency continuity theory for primates, this paper replaced the principal component analysis (PCA) method of the conventional SFA algorithm with the myTICA method, extracted the Gabor basis functions of natural images, initialized the basis function family; it used the feature basis expansion algorithm based on visual selection consistency continuity (the VSCC_FBEA algorithm) to replace the polynomial expansion method in the original SFA algorithm to generates the Gabor basis functions of features with long and short-term visual selectivity in the family of basis functions, which solved the drawbacks of the polynomial prediction algorithm; it also designed the Lipschitz consistency constraint, and proposed the Lipschitz-Orthogonal-Pruning-Method (LOPM algorithm) to optimize the basis function family into an over-complete family of basis functions. In addition, this paper used the feature expression method based on visual invariance theory (visual invariance theory -FEM) to establish the set of features of natural images with visual selection consistency continuity. Subsequently, it adopted three error evaluation methods and mySFA classification method to evaluate the proposed algorithm. According to the experimental results, the proposed algorithm showed good prediction performance with respect to the LSVRC2012 data set; compared with the SFA, GSFA, TICA, myICA and mySFA algorithms, the proposed algorithm is correct and feasible; when the classification threshold of the algorithm was set at 8.0, the recognition rate of the proposed algorithm reached 99.66%, and neither of the false recognition rate and the false rejection rate was higher than 0.33%. The proposed algorithm has good performance in prediction and classification, and also shows good anti-noise capacity under limited noise conditions.


Sign in / Sign up

Export Citation Format

Share Document