Multitask Similarity Cluster

2013 ◽  
Vol 765-767 ◽  
pp. 1662-1666
Author(s):  
Zhen Xing Li ◽  
Wei Hua Li

Single task learning is widely used training in artificial neural network. Before, people usually see other tasks as noise in same learning machine. However, multitask learning, proposed by Rich Caruana, sees simultaneously training several correlated tasks is helpful to improve single tasks performance. In this paper, we propose a new neural network multitask similarity cluster. Combined with hellinger distance, multitask similarity cluster can estimate distances among clusters more accurate. Experimental results show multitask learning is helpful to improve performance of single task and multitask similarity cluster can get satisfactory result.

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3294
Author(s):  
Carla Delmarre ◽  
Marie-Anne Resmond ◽  
Frédéric Kuznik ◽  
Christian Obrecht ◽  
Bao Chen ◽  
...  

Sorption thermal heat storage is a promising solution to improve the development of renewable energies and to promote a rational use of energy both for industry and households. These systems store thermal energy through physico-chemical sorption/desorption reactions that are also termed hydration/dehydration. Their introduction to the market requires to assess their energy performances, usually analysed by numerical simulation of the overall system. To address this, physical models are commonly developed and used. However, simulation based on such models are time-consuming which does not allow their use for yearly simulations. Artificial neural network (ANN)-based models, which are known for their computational efficiency, may overcome this issue. Therefore, the main objective of this study is to investigate the use of an ANN model to simulate a sorption heat storage system, instead of using a physical model. The neural network is trained using experimental results in order to evaluate this approach on actual systems. By using a recurrent neural network (RNN) and the Deep Learning Toolbox in MATLAB, a good accuracy is reached, and the predicted results are close to the experimental results. The root mean squared error for the prediction of the temperature difference during the thermal energy storage process is less than 3K for both hydration and dehydration, the maximal temperature difference being, respectively, about 90K and 40K.


2018 ◽  
Vol 65 ◽  
pp. 05004
Author(s):  
Augustine Chioma Affam ◽  
Malay Chaudhuri ◽  
Chee Chung Wong ◽  
Chee Swee Wong

The study examined artificial neural network (ANN) modeling for the prediction of chlorpyrifos, cypermethrin and chlorothalonil pesticides degradation by the FeGAC/H2O2 process. The operating condition was the optimum condition from a series of experiments. Under these conditions; FeGAC 5 g/L, H2O2 concentration 100 mg/L, pH 3 and 60 min reaction time, the COD removal obtained was 96.19%. The ANN model was developed using a three-layer multilayer perceptron (MLP) neural network to predict pesticide degradation in terms of COD removal. The configuration of the model with the smallest mean square error (MSE) of 0.000046 contained 5 inputs, 9 hidden and, 1 output neuron. The Levenberg–Marquardt backpropagation training algorithm was used for training the network, while tangent sigmoid and linear transfer functions were used at the hidden and output neurons, respectively. The predicted results were in close agreement with the experimental results with correlation coefficient (R2) of 0.9994 i.e. 99.94% showing a close agreement to the actual experimental results. The sensitivity analysis showed that FeGAC dose had the highest influence with relative importance of 25.33%. The results show how robust the ANN model could be in the prediction of the behavior of the FeGAC/H2O2 process.


2017 ◽  
Vol 12 (1) ◽  
Author(s):  
Mahnaz Yasemi ◽  
Masoud Rahimi ◽  
Amir Heydarinasab ◽  
Mehdi Ardjmand

Abstract: The current study presents the outcomes of modeling and optimizing extraction of gallotannic acid from Quercus leaves using a microfluidic system. In this study, the effects of various experimental parameters were investigated using the method of design expert. Number of experiments suggested is 31 by central composite design of Design Expert. The experimental results of design expert were analyzed by artificial neural network (ANN). Based on the results of ANN, independent variables experiment: temperature (T), flow rate ratio (FR) and pH have shown a negative effect on extraction yield (dependent variable), while the residence time (RT) has shown a positive effect. In trained network, ${R^2} = 0.9805$ and RMSE = 0.0166 shows good agreement between the predicted values of ANN and experimental results. Optimum extraction conditions, to reach maximum yield by genetic algorithms (GA), were FR = 0.53, RT = 26.4, pH = 2.06 and T = 21.44 ${R^2} = 0.9805$ . The extraction yield under the optimum predicated conditions was 96.4 %, which was well matched with the experimental value 95.01 % $\pm 0.63$ . Based on the obtained results, it was found that the ANN model could be employed successfully in estimating the gallotannic acid extraction efficiency using microfluidic extraction method.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Pradyut Kundu ◽  
Anupam Debsarkar ◽  
Somnath Mukherjee

The present paper deals with treatment of slaughterhouse wastewater by conducting a laboratory scale sequencing batch reactor (SBR) with different input characterized samples, and the experimental results are explored for the formulation of feedforward backpropagation artificial neural network (ANN) to predict combined removal efficiency of chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N). The reactor was operated under three different combinations of aerobic-anoxic sequence, namely, (4 + 4), (5 + 3), and (5 + 4) hour of total react period with influent COD and NH4+-N level of 2000 ± 100 mg/L and 120 ± 10 mg/L, respectively. ANN modeling was carried out using neural network tools, with Levenberg-Marquardt training algorithm. Various trials were examined for training of three types of ANN models (Models “A,” “B,” and “C”) using number of neurons in the hidden layer varying from 2 to 30. All together 29, data sets were used for each three types of model for which 15 data sets were used for training, 7 data sets for validation, and 7 data sets for testing. The experimental results were used for testing and validation of three types of ANN models. Three ANN models (Models “A,” “B,” and “C”) were trained and tested reasonably well to predict COD and NH4+-N removal efficiently with 3.33% experimental error.


2011 ◽  
Vol 128-129 ◽  
pp. 134-137
Author(s):  
Xiang Pan

This paper discusses a face recognition method based on the fuzzy neural network (FNN). The fuzzy neural network has more advantages than artificial neural network alone. The paper firstly introduces the structure of the FNN. Than proposed the fuzzy rules and the study algorithm. Thirdly it researches on the process of face recognition. The experimental results prove that this method can achieve good location performance and good effect of extraction.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Shifei Ding ◽  
Nan Zhang ◽  
Xinzheng Xu ◽  
Lili Guo ◽  
Jian Zhang

Recently, deep learning has aroused wide interest in machine learning fields. Deep learning is a multilayer perceptron artificial neural network algorithm. Deep learning has the advantage of approximating the complicated function and alleviating the optimization difficulty associated with deep models. Multilayer extreme learning machine (MLELM) is a learning algorithm of an artificial neural network which takes advantages of deep learning and extreme learning machine. Not only does MLELM approximate the complicated function but it also does not need to iterate during the training process. We combining with MLELM and extreme learning machine with kernel (KELM) put forward deep extreme learning machine (DELM) and apply it to EEG classification in this paper. This paper focuses on the application of DELM in the classification of the visual feedback experiment, using MATLAB and the second brain-computer interface (BCI) competition datasets. By simulating and analyzing the results of the experiments, effectiveness of the application of DELM in EEG classification is confirmed.


Sign in / Sign up

Export Citation Format

Share Document