An Investigation of Heat Transfer Characteristic of Cross Internal Helical Microfin Gravity Heat Pipe with Self-Rewetting Fluid

2013 ◽  
Vol 765-767 ◽  
pp. 189-192 ◽  
Author(s):  
F.Z. Tian ◽  
G.M. Xin ◽  
Q. Hai ◽  
L. Cheng

Gravity heat pipe has been widely used in many heat transfer devices due to its high thermal conductivity, low cost and sample structure. In the paper, an experimental investigation of the gravity heat pipe with cross internal helical microfin gravity with two kind of working fluid (water and butyl alcohol solution with 5% mass fraction) was presented from horizontal and vertical position. The experimental results showed that in the horizontal position, self-rewetting fluid can significant increases the GHPCIHMs drying limit, decreases the thermal resistance and improves the heat transfer performance. In the vertical position, gravity effect play main functions on fluid return, self-rewetting has not been proved to have played a positive role on the heat transfer performance.

2014 ◽  
Vol 609-610 ◽  
pp. 1526-1531 ◽  
Author(s):  
Yan Xia Yang ◽  
Xiao Dong Wang ◽  
Yi Luo ◽  
Liang Liang Zou

To study the heat transfer performance of micro heat pipe, theoretical analysis of flat plate micro heat pipe with trapezoid cross section are presented in this paper. A one-dimensional stationary mathematical model for micro heat pipe grooved capillary flow using finite volume method (FVM) was established. The micro heat pipe had vapor space connect with each other and the influences of shear stress between vapor and fluid in the working process were described in the model which made the model more precisely. The axial variation of working fluid distribution in the heat pipe, pressure difference between vapor and liquid, and velocity of vapor and liquid were analyzed. In addition, the maximum heat transport capacity of micro heat pipe was calculated. The simulation results showed good agreement with the experiment results, and it could predict the heat transfer performance accurately, which was useful to micro heat pipe structural design.


2015 ◽  
Vol 88 ◽  
pp. 391-397 ◽  
Author(s):  
Hui Li ◽  
Bo Zhou ◽  
Yong Tang ◽  
Rui Zhou ◽  
Zhongshan Liu ◽  
...  

Author(s):  
Lilin Chu ◽  
Yulong Ji ◽  
Chunrong Yu ◽  
Yantao Li ◽  
Hongbin Ma ◽  
...  

Abstract In order to understand the heat transfer performance, startup and fluid flow condition of oscillating heat pipe (OHP) with hydraulic diameter far exceeding the maximum hydraulic diameter (MHD), an experimental investigation on heat transfer performance and visualization was conducted. From the experimental performance, it is found that the OHP can still work well with ethanol as the working fluid when the tube diameter has exceeded the MHD of 91.6%. In addition, the detailed flow patterns of the OHP were recorded by a highspeed camera for vertical and horizontal orientation to understand its physical mechanism. In the vertical orientation, initially working fluid generates small bubbles, and then the small bubbles coalesce and grow to vapor plugs, the vapor plugs finally pushes the liquid slugs to oscillate in the tube. In the horizontal orientation, the working fluid surface fluctuates due to the vapors flow from the evaporator to the condenser and bubbles burst in the evaporator. When the peak of liquid wave reaches the upper surface of tube, a liquid slug has been formed, and then the steam flow pushes the liquid slugs to oscillate in the tube.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Tingting Hao ◽  
Hongbin Ma ◽  
Xuehu Ma

A new oscillating heat pipe (OHP) charged with hybrid fluids can improve thermal performance. The key difference in this OHP is that it uses room temperature liquid metal (Galinstan consisting of gallium, indium, and tin) and water as the working fluid. The OHP was fabricated on a copper plate with six turns and a 3 × 3 mm2 cross section. The OHP with hybrid fluids as the working fluid was investigated through visual observation and thermal measurement. Liquid metal was successfully driven to flow through the OHP by the pressure difference between the evaporator and the condenser without external force. Experimental results show that while added liquid metal can increase the heat transport capability, liquid metal oscillation amplitude decreases as the filling ratio of liquid metal increases. Visualization of experimental results show that liquid metal oscillation position and velocity increase as the heat input increases. Oscillating motion of liquid metal in the OHP significantly increases the heat transfer performance at high heat input. The lowest thermal resistance of 0.076 °C/W was achieved in the hybrid fluids-filled OHP with a heat input of 420 W. We experimentally demonstrated a 13% higher heat transfer performance using liquid metal as the working fluid compared to an OHP charged with pure water.


2013 ◽  
Vol 589-590 ◽  
pp. 559-564
Author(s):  
Xi Bing Li ◽  
Yun Shi Ma ◽  
Xun Wang ◽  
Ming Li

As a highly efficient heat transfer component, a micro heat pipe (MHP) has been widely applied to the situations with high heat flux concentration. However, a MHPs heat transfer performance is affected by many factors, among which, working fluid inventory has great influence on the security, reliability and frost resistance of its heat transfer performance. In order to determine the appropriate working fluid inventory for grooved MHPs, this paper first analyzed the working principle, major heat transfer limits and heat flux distribution law of grooved MHPs in electronic chips with high heat flux concentration, then established a mathematic model for the working fluid inventory in grooved MHPs. Finally, with distilled water being the working fluid, a series of experimental investigations were conducted at different temperatures to test the heat transfer performances of grooved MHPs, which were perfused with different inventories and with different adiabatic section lengths. The experimental results show that when the value of α is roughly within 0.40±0.05, a grooved MHP can acquire its best heat transfer performance, and the working fluid inventory can be determined by the proposed mathematic model. Therefore this study solves the complicated problem of determining appropriate working fluid inventory for grooved MHPs.


2021 ◽  
Vol 13 (22) ◽  
pp. 12481
Author(s):  
Jiwen Cen ◽  
Feng Li ◽  
Tingliang Li ◽  
Wenbo Huang ◽  
Juanwen Chen ◽  
...  

The installation and operation of enhanced geothermal systems (EGS) involves many challenges. These challenges include the high cost and high risk associated with the investment capital, potential large working-fluid leakage, corrosion of equipment, and subsiding land. A super-long heat pipe can be used for geothermal exploitation to avoid these problems. In this paper, a high aspect-ratio heat pipe (30 m long, 17 mm in inner diameter) is installed vertically. Experiments are then carried out to study its heat-transfer performance and characteristics using several filling ratios of deionized water, different heating powers, and various cooling-water flowrates. The results show that the optimal filling-ratio is about 40% of the volume of the vaporizing section of the heat pipe. Compared with a conventional short heat pipe, the extra-long heat pipe experiences significant thermal vibration. The oscillation frequency depends on the heating power and working-fluid filling ratio. With increasing cooling-water flow rate, the heat-transfer rate of the heat pipe increases before it reaches a plateau. In addition, we investigate the heat-transfer performance of the heat pipe for an extreme working-fluid filling ratio; the results indicate that the lower part of the heat pipe is filled with vapor, which reduces the heat-transfer to the top part. Based on the experimental data, guidelines for designing a heat pipe that can be really used for the exploitation of earth-deep geothermal energy are analyzed.


2013 ◽  
Vol 135 (7) ◽  
Author(s):  
Yulong Ji ◽  
Chen Xu ◽  
Hongbin Ma ◽  
Pan Xinxiang

This paper presents an experimental investigation of whether heat transfer performance in an oscillating heat pipe (OHP) would improve if the inner surface of the heat pipe was coated with a layer of copper oxide (CuO). The OHP had six turns and three sections, i.e., evaporator, condenser, and adiabatic section with lengths of 40 mm, 64 mm, and 51 mm, respectively. The cleaned copper tubing was chemically treated with a chemical solution and heated in a furnace. A microstructure layer of CuO was formed in the inner surface of the OHP with K2S2O8 and KOH. The working fluid in this study was water with filling ratios ranging from 40% to 70%. The experimental results show that the CuO microstructure layer is superhydrophilic and can enhance the OHP heat transfer performance. The investigation results in a new way to enhance the heat transfer performance of an OHP.


Sign in / Sign up

Export Citation Format

Share Document