Spray Characteristics of Diesel and Biodiesel in Direct Injection Diesel Engine

2013 ◽  
Vol 768 ◽  
pp. 173-179
Author(s):  
P. Raghu ◽  
K. Thilagan ◽  
M. Thirumoorthy ◽  
Siddharth Lokachari ◽  
N. Nallusamy

Alternative fuels for diesel engines are becoming important due to the decrease of petroleum reservoirs and the increase of environment pollution problems. The biodiesel is technically competitive with conventional petroleum-derived diesel fuel and requires no changes in the fuel distribution system. Injection process of biodiesel influences the atomization and dispersion of fuel in the combustion chamber. In diesel Engine different tests have been performed to improve the efficiency in cycle, power, less emission, speed, etc. There are various methods of visualizing the combustion chamber in a Diesel engine. For visualizing spray characteristics of combustion chamber in Diesel engine the window of 10mm diameter hole, transparent quartz glass materials are used, which can with-stand 1500°C temperature and pressure of about 1000 bar and engine is hand cranked for conducting the experiments. Spray characteristics of palm oil methyl ester (POME) and diesel were studied experimentally. Spray penetration and spray angle were measured in a combustion chamber of DI diesel engine by employing high definition video camera and image processing technique. The study shows the POME gives longer spray tip penetration and spray angle are smaller than those of diesel fuels. This is due to the viscosity and density of biodiesel.

1996 ◽  
Vol 6 (1) ◽  
pp. 95-109 ◽  
Author(s):  
H. C. Yang ◽  
Hong Sun Ryou ◽  
Y. T. Jeong ◽  
Young Ki Choi

2016 ◽  
Vol 20 (suppl. 4) ◽  
pp. 937-946 ◽  
Author(s):  
Venkadesan Gnanamoorthi ◽  
Navin Marudhan ◽  
Devaradjane Gobalakichenin

2002 ◽  
Vol 124 (4) ◽  
pp. 1042-1052 ◽  
Author(s):  
C. Hergart ◽  
N. Peters

Capturing the physics related to the processes occurring in the two-phase flow of a direct-injection diesel engine requires a highly sophisticated modeling approach. The representative interactive flamelet (RIF) model has gained widespread attention owing to its ability of correctly describing ignition, combustion, and pollutant formation phenomena. This is achieved by incorporating very detailed chemistry for the gas phase as well as for the soot particle growth and oxidation, without imposing any significant computational penalty. This study addresses the part load soot underprediction of the model, which has been observed in previous investigations. By assigning flamelets, which are exposed to the walls of the combustion chamber, with heat losses calculated in a computational fluid dynamics (CFD) code, predictions of the soot emissions in a small-bore direct-injection diesel engine are substationally improved. It is concluded that the experimentally observed emissions of soot may have their origin in flame quenching at the relatively cold combustion chamber walls.


Author(s):  
Shyamsundar Rajaraman ◽  
G. K. Yashwanth ◽  
T. Rajan ◽  
R. Siva Kumaran ◽  
P. Raghu

World at present is confronted with the twin crisis of fossil fuel depletion and environmental pollution. Rapid escalation in prices and hydrocarbon resources depletion has led us to look for alternative fuels, which can satisfy ever increasing demands of energy as well as protect the environment from noxious pollutants. In this direction an attempt has been made to study a biodiesel, namely Moringa Oil Methyl Esters [MOME]. All the experiments were carried out on a 4.4 kW naturally aspirated stationary direct injection diesel engine coupled with a dynamometer to determine the engine performance and emission analysis for MOME. It was observed that there was a reduction in HC, CO and PM emissions along with a substantial increase in NOx. MOME and its blends had slightly lower thermal efficiency than diesel oil.


2014 ◽  
Vol 18 (1) ◽  
pp. 217-228 ◽  
Author(s):  
Panneer John ◽  
Karuppannan Vadivel

In the recent research, as a result of depletion of world petroleum reserves, considerable attention has been focused on the use of different alternative fuels in diesel engines. The present work aims to ensure the possibility of adding ethanol as an additive with animal fat biodiesel that is tested as an alternative fuel for diesel in a CI engine. In this study, biodiesel is obtained from waste pork lard by base-catalyzed transesterification with methanol when potassium hydroxide as catalyst. 2.5%, 5% and 7.5% by volume of ethanol is blended with neat biodiesel in order to improve performance and combustion characteristics of a diesel engine. The experimental work is carried out in a 3.7 kW, single cylinder, naturally aspirated, water cooled, direct injection diesel engine for different loads and at a constant speed of 1500 rpm. The performance, emission and combustion characteristics of biodiesel-ethanol blends are investigated by comparing them with neat biodiesel and standard diesel. The experimental test results showed that the combustion and performance characteristics improved with the increase in percentage of ethanol addition with biodiesel. When compared to neat biodiesel and standard diesel, an increase in brake thermal efficiency of 5.8% and 4.1% is obtained for BEB7.5 blend at full load of the engine. With the increase in percentage of ethanol fraction in the blends, peak cylinder pressure and the corresponding heat release rate are increased. Biodiesel-ethanol blends exhibit longer ignition delay and shorter combustion duration when compared to neat biodiesel. Optimum reduction in carbon monoxide, unburned hydrocarbon and smoke emission are attained while using BEB5 blend at full load of the engine. However, there is an adverse effect in case of nitrogen oxide emission.


2002 ◽  
Vol 125 (1) ◽  
pp. 351-357 ◽  
Author(s):  
Y. Kidoguchi ◽  
M. Sanda ◽  
K. Miwa

Effects of combustion chamber geometry and initial mixture distribution on the combustion process were investigated in a direct-injection diesel engine. In the engine experiment, a high squish combustion chamber with a squish lip could reduce both NOx and particulate emissions with retarded injection timing. According to the results of CFD computation and phenomenological modeling, the high squish combustion chamber with a central pip is effective to keep the combusting mixture under the squish lip until the end of combustion and the combustion region forms rich and highly turbulent atmosphere. This kind of mixture distribution tends to reduce initial burning, resulting in restraint of NOx emission while keeping low particulate emission.


Sign in / Sign up

Export Citation Format

Share Document