Experimental and Theoretical Optimization of Combustion Chamber and Fuel Distribution for the Low Emission Direct-Injection Diesel Engine

2002 ◽  
Vol 125 (1) ◽  
pp. 351-357 ◽  
Author(s):  
Y. Kidoguchi ◽  
M. Sanda ◽  
K. Miwa

Effects of combustion chamber geometry and initial mixture distribution on the combustion process were investigated in a direct-injection diesel engine. In the engine experiment, a high squish combustion chamber with a squish lip could reduce both NOx and particulate emissions with retarded injection timing. According to the results of CFD computation and phenomenological modeling, the high squish combustion chamber with a central pip is effective to keep the combusting mixture under the squish lip until the end of combustion and the combustion region forms rich and highly turbulent atmosphere. This kind of mixture distribution tends to reduce initial burning, resulting in restraint of NOx emission while keeping low particulate emission.

Author(s):  
Yoshiyuki Kidoguchi ◽  
Michiko Sanda ◽  
Kei Miwa

Abstract This study investigated the effect of combustion chamber geometry and initial mixture distribution on combustion process in a direct-injection diesel engine by means of experiment and CFD calculation. The high squish combustion chamber with squish lip could produce simultaneous reduction of NOx and particulate emissions with retarded injection timing in the real engine experiment. According to the CFD computation, the high squish combustion chamber with central pip is effective to continue combustion under the squish lip until the end of combustion and the combustion region forms rich and high turbulence atmosphere, which reduces NOx emissions. This chamber can also reduce initial burning because combustion continues under the squish lip. The CFD computation is also carried out in order to investigate the effect of initial mixture distribution on combustion process. The results suggest that mixture distribution affects the history of heat release rate. When fuel is distributed in the bottom or wide region in the combustion chamber, burned gas tends to spread to the cavity center and initial heat release rate becomes high. On the contrary, the high squish combustion chamber with central pip produces lower initial heat release rate because combustion with local rich condition continues long under the squish lip. Diffusion burning is promoted by high swirl motion in this chamber with keeping lower initial heat release rate.


2018 ◽  
Vol 234 ◽  
pp. 03007
Author(s):  
Plamen Punov ◽  
Tsvetomir Gechev ◽  
Svetoslav Mihalkov ◽  
Pierre Podevin ◽  
Dalibor Barta

The pilot injection strategy is a widely used approach for reducing the noise of the combustion process in direct injection diesel engines. In the last generation of automotive diesel engines up to several pilot injections could occur to better control the rate of heat release (ROHR) in the cylinder as well as the pollutant formation. However, determination of the timing and duration for each pilot injection needs to be precisely optimised. In this paper an experimental study of the pilot injection strategy was conducted on a direct injection diesel engine. Single and double pilot injection strategy was studied. The engine rated power is 100 kW at 4000 rpm while the rated torque is 320 Nm at 2000 rpm. An engine operating point determined by the rotation speed of 1400 rpm and torque of 100 Nm was chosen. The pilot and pre-injection timing was widely varied in order to study the influence on the combustion process as well as on the fuel consumption.


2013 ◽  
Vol 768 ◽  
pp. 226-230 ◽  
Author(s):  
Manimaran Renganathan ◽  
R. Thundil Karuppa Raj

Diesel engine combustion modeling presents a challenging task as the injection starts with the spray formation and breakup of spray into droplets. The computation involved in predicting the in-cylinder fluid mixture during combustion using eulerian and lagrangian approach is rather a cumbersome task. In this work, 3D-CFD computations are performed to understand the behaviour of spray droplet variables on combustion process and emissions in a direct injection diesel engine. The study involves the computation of turbulent flow-field quantities, modelling various processes such as fuel spray distribution, atomization, collision, evaporation, combustion and pollutant formation using a commercial CFD code. Grid independence and time independent studies are carried out for finding the optimum grid size and time step. The numerical results predicted using CFD code is validated with the experimental data available from the literature. The process of combustion and emission characteristics is investigated numerically with respect to spray characteristics. The work is further extended to study the effect of swirl ratio and injection timing on droplet parameters.


Author(s):  
Nik Rosli Abdullah ◽  
Rizalman Mamat ◽  
Miroslaw L Wyszynski ◽  
Anthanasios Tsolakis ◽  
Hongming Xu

1994 ◽  
Author(s):  
Hideaki Tanabe ◽  
Masashi Takahashi ◽  
G. Takeshi Sato ◽  
Satoshi Kato ◽  
Shigeru Onishi

Author(s):  
Raouf Mobasheri ◽  
Zhijun Peng

High-Speed Direct Injection (HSDI) diesel engines are increasingly used in automotive applications due to superior fuel economy. An advanced CFD simulation has been carried out to analyze the effect of injection timing on combustion process and emission characteristics in a four valves 2.0L Ford diesel engine. The calculation was performed from intake valve closing (IVC) to exhaust valve opening (EVO) at constant speed of 1600 rpm. Since the work was concentrated on the spray injection, mixture formation and combustion process, only a 60° sector mesh was employed for the calculations. For combustion modeling, an improved version of the Coherent Flame Model (ECFM-3Z) has been applied accompanied with advanced models for emission modeling. The results of simulation were compared against experimental data. Good agreement of calculated and measured in-cylinder pressure trace and pollutant formation trends were observed for all investigated operating points. In addition, the results showed that the current CFD model can be applied as a beneficial tool for analyzing the parameters of the diesel combustion under HSDI operating condition.


Author(s):  
M. Yılmaz ◽  
M. Zafer Gul ◽  
Y. Yukselenturk ◽  
B. Akay ◽  
H. Koten

It is estimated by the experts in the automotive industry that diesel engines on the transport market should increase within the years to come due to their high thermal efficiency coupled with low carbon dioxide (CO2) emissions, provided their nitrogen oxides (NOx) and particulate emissions are reduced. At present, adequate after-treatments, NOx and particulates matter (PM) traps are developed and industrialized with still concerns about fuel economy, robustness, sensitivity to fuel sulfur and cost because of their complex and sophisticated control strategy. New combustion processes focused on clean diesel combustion are investigated for their potential to achieve near zero particulate and NOx emissions. Their main drawbacks are increased level of unburned hydrocarbons (HC) and carbon monoxide (CO) emissions, combustion control at high load and limited operating range and power output. In this work, cold flow simulations for a single cylinder of a nine-liter (6 cylinder × 1.5 lt.) diesel engine have been performed to find out flow development and turbulence generation in the piston-cylinder assembly. In this study, the goal is to understand the flow field and the combustion process in order to be able to suggest some improvements on the in-cylinder design of an engine. Therefore combustion simulations of the engine have been performed to find out flow development and emission generation in the cylinder. Moreover, the interaction of air motion with high-pressure fuel spray injected directly into the cylinder has also been carried out. A Lagrangian multiphase model has been applied to the in-cylinder spray-air motion interaction in a heavy-duty CI engine under direct injection conditions. A comprehensive model for atomization of liquid sprays under high injection pressures has been employed. The combustion is modeled via a new combustion model ECFM-3Z (Extended Coherent Flame Model) developed at IFP. Finally, a calculation on an engine configuration with compression, spray injection and combustion in a direct injection Diesel engine is presented. Further investigation has also been performed in-cylinder design parameters in a DI diesel engine that result in low emissions by effect of high turbulence level. The results are widely in agreement qualitatively with the previous experimental and computational studies in the literature.


2016 ◽  
Vol 20 (suppl. 4) ◽  
pp. 937-946 ◽  
Author(s):  
Venkadesan Gnanamoorthi ◽  
Navin Marudhan ◽  
Devaradjane Gobalakichenin

2002 ◽  
Vol 124 (4) ◽  
pp. 1042-1052 ◽  
Author(s):  
C. Hergart ◽  
N. Peters

Capturing the physics related to the processes occurring in the two-phase flow of a direct-injection diesel engine requires a highly sophisticated modeling approach. The representative interactive flamelet (RIF) model has gained widespread attention owing to its ability of correctly describing ignition, combustion, and pollutant formation phenomena. This is achieved by incorporating very detailed chemistry for the gas phase as well as for the soot particle growth and oxidation, without imposing any significant computational penalty. This study addresses the part load soot underprediction of the model, which has been observed in previous investigations. By assigning flamelets, which are exposed to the walls of the combustion chamber, with heat losses calculated in a computational fluid dynamics (CFD) code, predictions of the soot emissions in a small-bore direct-injection diesel engine are substationally improved. It is concluded that the experimentally observed emissions of soot may have their origin in flame quenching at the relatively cold combustion chamber walls.


Sign in / Sign up

Export Citation Format

Share Document