Volume 3: Combustion Science and Engineering
Latest Publications


TOTAL DOCUMENTS

50
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

Published By ASMEDC

9780791843765

Author(s):  
Luca Casarsa ◽  
Pietro Giannattasio ◽  
Diego Micheli

A simple and efficient numerical model is presented for the simulation of pulse combustors. It is based on the numerical solution of the quasi-1D unsteady flow equations and on phenomenological sub-models of turbulence and combustion. The gas dynamics equations are solved by using the Flux Difference Splitting (FDS) technique, a finite-volume upwind numerical scheme, and ENO reconstructions to obtain second-order accurate non-oscillatory solutions. The numerical fluxes computed at the cell interfaces are used to transport also the reacting species, their formation energy and the turbulent kinetic energy. The combustion progress in each cell is evaluated explicitly at the end of each time step according to a second-order overall reaction kinetics. In this way, the computations of gas dynamic evolution and heat release are decoupled, which makes the model particularly simple and efficient. A comprehensive set of measurements has been performed on a small Helmholtz type pulse-jet in order to validate the model. Air and fuel consumptions, wall temperatures, pressure cycles in both combustion chamber and tail-pipe, and instantaneous thrust have been recorded in different operating conditions of the device. The comparison between numerical and experimental results turns out to be satisfactory in all the working conditions of the pulse-jet. In particular, accurate predictions are obtained of the device operating frequency and of shape, amplitude and phase of the pressure waves in both combustion chamber and tail-pipe.


Author(s):  
Alexander L. Brown ◽  
Richard A. Jepsen

Northern New Mexico forests are characterized predominantly by small (i.e. around 10 cm diameter), densely populated conifers. Land managers, both private and government, often thin the forests to reduce the risks from wildland fire. Thinned residues typically amount to approximately 20 to 50 tons per acre. With no obvious market use for these small thinning residues, they are presently either discarded on the ground, or burnt as waste. Through a small business assistance initiative, Sandia National Laboratories is helping to identify and promote process improvements. Several productive uses of the residues have been evaluated, and are presented. The concept of a mobile pyrolysis unit is presently being examined in more detail for several pragmatic reasons. It could remove a significant fraction of the mass as a dense liquid that could be shipped to a refinery for conversion to a fossil fuel additive or substitute. Also, it is a process that is sufficiently well self contained that it could be reasonably sized for a mobile system. Present issues with the concept are addressed, including yield, benefit, and cost.


Author(s):  
Christopher Depcik ◽  
Sudarshan Loya ◽  
Anand Srinivasan

Future emission standards are driving the need for advanced control of both Spark (SI) and Compression Ignition (CI) engines. However, even with the implementation of cooled Exhaust Gas Recirculation and Low Temperature Combustion (LTC), it is unlikely that in-cylinder combustion strategies alone will reduce emissions to levels below the proposed standards. As a result, researchers are developing complex catalytic aftertreatment systems to meet these tailpipe regulations for both conventional and alternative combustion regimes. Simulating these exhaust systems requires fast and accurate models suitable for significant changes in inlet conditions. Most aftertreatment devices contain Platinum Group Metals because of their widely documented beneficial catalysis properties; examples include Diesel Oxidation Catalysts, Three-Way Catalysts and Lean NOx Traps. There are kinetic mechanisms available for each of these devices, but often they do not extrapolate well to other formulations. For example, Carbon Monoxide (CO) levels entering a catalyst are significantly different between an SI and CI engine. In addition, modifying engine control to utilize LTC operation can result in an increase in CO levels due to lower combustion efficiency. This adversely affects the conversion capabilities of a catalytic device through increased levels of CO inhibition. Finally, catalyst loading and metal dispersion differences between devices often prohibit a direct extension of kinetic constants. As a result, mechanisms often need recalibration for correct modeling capabilities. In order to begin creating a more predictive kinetic mechanism, this paper simulates CO oxidation as a function of different inlet concentration levels and metal loadings. While aftertreatment devices contain many reactions, modeling of one fundamental reaction is a first step to determine the feasibility of adaptive kinetics. In addition, research into the history of the CO oxidation mechanism over platinum illustrates a more accurate rate expression to utilize in deference to current modeling activities. The authors calibrate this expression to experimental data taking into account significant changes in inlet conditions, metal loading and dispersion values. Model fidelity is determined through the simulation of additional data not part of the initial calibration efforts. In addition, the paper discusses strengths and weaknesses of the model along with how other researchers can help foster adaptive kinetic development.


Author(s):  
Zexuan Zhang ◽  
Ting Wang

Calcined coke is an important material for making carbon anodes for smelting of alumina to aluminum. Calcining is an energy intensive industry and a significant amount of heat is wasted in the calcining process. Efficiently managing this energy resource is tied to the profit margin and survivability of a calcining plant. To help improve the energy efficiency of the calcining process, a 3-D computational model is developed to gain insight of the thermal-flow and combustion behavior in the calciner. Comprehensive models are employed to simulate the moving petcoke bed with moisture evaporation, devolatilization, and coke fines combustion with a conjugate radiation-convection-conduction calculation.


Author(s):  
M. Yılmaz ◽  
M. Zafer Gul ◽  
Y. Yukselenturk ◽  
B. Akay ◽  
H. Koten

It is estimated by the experts in the automotive industry that diesel engines on the transport market should increase within the years to come due to their high thermal efficiency coupled with low carbon dioxide (CO2) emissions, provided their nitrogen oxides (NOx) and particulate emissions are reduced. At present, adequate after-treatments, NOx and particulates matter (PM) traps are developed and industrialized with still concerns about fuel economy, robustness, sensitivity to fuel sulfur and cost because of their complex and sophisticated control strategy. New combustion processes focused on clean diesel combustion are investigated for their potential to achieve near zero particulate and NOx emissions. Their main drawbacks are increased level of unburned hydrocarbons (HC) and carbon monoxide (CO) emissions, combustion control at high load and limited operating range and power output. In this work, cold flow simulations for a single cylinder of a nine-liter (6 cylinder × 1.5 lt.) diesel engine have been performed to find out flow development and turbulence generation in the piston-cylinder assembly. In this study, the goal is to understand the flow field and the combustion process in order to be able to suggest some improvements on the in-cylinder design of an engine. Therefore combustion simulations of the engine have been performed to find out flow development and emission generation in the cylinder. Moreover, the interaction of air motion with high-pressure fuel spray injected directly into the cylinder has also been carried out. A Lagrangian multiphase model has been applied to the in-cylinder spray-air motion interaction in a heavy-duty CI engine under direct injection conditions. A comprehensive model for atomization of liquid sprays under high injection pressures has been employed. The combustion is modeled via a new combustion model ECFM-3Z (Extended Coherent Flame Model) developed at IFP. Finally, a calculation on an engine configuration with compression, spray injection and combustion in a direct injection Diesel engine is presented. Further investigation has also been performed in-cylinder design parameters in a DI diesel engine that result in low emissions by effect of high turbulence level. The results are widely in agreement qualitatively with the previous experimental and computational studies in the literature.


Author(s):  
Shyamsundar Rajaraman ◽  
G. K. Yashwanth ◽  
T. Rajan ◽  
R. Siva Kumaran ◽  
P. Raghu

World at present is confronted with the twin crisis of fossil fuel depletion and environmental pollution. Rapid escalation in prices and hydrocarbon resources depletion has led us to look for alternative fuels, which can satisfy ever increasing demands of energy as well as protect the environment from noxious pollutants. In this direction an attempt has been made to study a biodiesel, namely Moringa Oil Methyl Esters [MOME]. All the experiments were carried out on a 4.4 kW naturally aspirated stationary direct injection diesel engine coupled with a dynamometer to determine the engine performance and emission analysis for MOME. It was observed that there was a reduction in HC, CO and PM emissions along with a substantial increase in NOx. MOME and its blends had slightly lower thermal efficiency than diesel oil.


Author(s):  
Jun-Kai Wang ◽  
Jing-Lun Li ◽  
Ming-Hsun Wu ◽  
Rong-Horng Chen

The effects of pulsed water injection at the intake port of a modern port fuel injection gasoline engine were investigated. A port water injection system was developed and the water injector was installed on the intake runner of the single cylinder motorcycle engine at a location upstream of the fuel injector. The results show that with a water-gasoline injection ratio of 1, more than 80% of NOx emission can be removed. The trade-off was a 25% reduction in torque output at 4000 rpm and 20% throttle opening; however, the decrease on torque can be controlled to be within 5% by reducing water-gasoline mass ratios to less than 0.6. We also performed NOx emission modeling using one-dimensional gas dynamics code with extended Zeldovich mechanism, and consistent results were found between numerical prediction and experimental measurements. The port water injection approach appears to be an effective means for reducing NOx emission from a gasoline engine at low speed and high load conditions without largely sacrificing the performances on torque output and unburned hydrocarbon emissions.


Author(s):  
K. Ashok ◽  
N. Alagumurthi ◽  
C. G. Saravanan

An organic compound, Dioxane, is blended to reduce the viscosity of raw vegetable oil (Mahua). A dilute blend was prepared by mixing with raw vegetable oil (Mahua) and 10% dioxane in volume basis. Tests were conducted on a single cylinder, water cooled, DI diesel engine coupled with the eddy current dynamometer. Emissions like HC, NOX, etc., were measured by using gas analyzer and smoke density was measured by using smoke meter. The cylinder pressure, heat release rate were measured by combustion analyzer. From the experimental investigation, it was observed that operating at a blend ratio of 10% diesel-80% mahua oil-10% Dioxane significantly reduced the HC and NOx emissions when compared to diesel fuel. It was also observed, the variation of break thermal efficiency is almost same to that of diesel fuel. Hence, it can be concluded that raw vegetable oil (mahua) with Dioxane blend could partially replace the diesel, as a fuel.


Author(s):  
Cory A. Kramer ◽  
Reza Loloee ◽  
Indrek S. Wichman ◽  
Ruby N. Ghosh

The goal of this research is to obtain quantitative information on chemical speciation over time during high temperature material thermal decomposition. The long term goal of the research will be to impact structural fire safety by developing a data base of characteristic “burn signatures” for combustible structural materials. In order to establish procedure and to generate data for benchmark materials, the first material tested in these preliminary tests is poly-methyl-methacrylate (PMMA). Material samples are heated in an infrared (IR) heating chamber until they undergo pyrolysis. Time resolved quantitative measurements of the exhaust species CO2, O2, HC, and CO were obtained. During heating the PMMA sample undergoes two distinct processes. First, pre-combustion pyrolysis is characterized by the appearance a peak in the THC signal between 600–650 °C. Secondly, at about 900 °C flaming combustion occurs as evidenced by an exothermic reaction reported by the thermocouples. The time sequence of the production of HC, O2 depletion and CO2 production are consistent with combustion in an excess-oxidizer environment.


Author(s):  
Koyu Satoh ◽  
Naian Liu ◽  
Qiong Liu ◽  
K. T. Yang

It is important to examine the behavior of forest fires and city fires to mitigate the property damages and victims by fires. There have been many previous studies on forest fires where the fire spreading patterns were investigated, utilizing artificial satellite pictures of forest fires, together with the use of corresponding weather data and GIS data. On the other hand, large area city fires are very scarce in the world, particularly in modern cities where high-rise concrete buildings are constructed with sufficient open spaces. Thus, the examples of city fires to be referred are few and detailed investigations of city fires are limited. However, there have still been existing old cities where traditional houses built with flammable material such as wood, maybe historically important, only separated with very small open spacing. Fires may freely spread in those cities, once a big earthquake happens there and then water supply for the fire brigade is damaged in the worst case along with the effect of strong wind. There are some fundamental differences between the forest fires and city fires, as the fuel may distribute either continuously or discretely. For instance, in forest fires, the dead fallen leaves, dry grasses and trees are distributed continuously on the ground, while the wooden houses in cities are discretely distributed with some separation of open spacing, such as roads and gardens. Therefore, the wooden houses neighboring the burning houses with some separation are heated by radiation and flames to elevate the temperatures, thus causing the ignition, and finally reaching a large city fire. The authors have studied the forest fire spread and are planning to start a laboratory experiment of city fire spreading. In the preliminary investigation, a numerical study is made to correlate with the laboratory experiment of city fire propagation, utilizing the three-dimensional CFD simulations. Based on the detailed experimental analysis, the authors are attempting to modify the three dimensional CFD code to predict the forest fires and city fires more precisely, taking into account the thermal heating and ignition processes. In this study, some fundamental information on the city fire propagation has been obtained, particularly to know the safe open spacing distances between the houses in the cities and also the wind speed.


Sign in / Sign up

Export Citation Format

Share Document