Catalytic Oxidation of o-chlorotoluene to o-chlorobenzaldehyde by Vanadium Doped Anatase Mesoporous TiO2

2013 ◽  
Vol 781-784 ◽  
pp. 182-185 ◽  
Author(s):  
Sheng Chun Yang ◽  
Jia Qiang Wang

A novel method for the catalytic oxidation of o-chlorotoluene (OCT) to o-chlorobenzaldehyde (CBD) was proposed using vanadium doped anatase mesoporous TiO2 (V/MTiO2), the catalytic reaction conditions were investigated. Under the optimum catalytic reaction conditions: 10 mL of acetic acid 100 °C of reaction temperature, 10 h of reaction time and 100 mg of catalyst, the conversion rate of OCT could reach to 95.3%, with a selectivity of 63.5%.

2017 ◽  
Vol 41 (2) ◽  
pp. 88-92
Author(s):  
Shenggui Liu ◽  
Rongkai Pan ◽  
Wenyi Su ◽  
Guobi Li ◽  
Chunlin Ni

2,6-Bis[1-(pyridin-2-yl)-1H-benzo[d]-imidazol-2-yl]pyridine (bpbp), which has been synthesised by intramolecular thermocyclisation of N2,N6-bis[2-(pyridin-2-ylamino)phenyl]pyridine-2,6-dicarboxamide, reacts with sodium pyridine-2,6-dicarboxylate (pydic) and RuCl3 to give [Ru(bpbp)(pydic)] which can catalyse the oxidation of (1H-benzo[d]imidazol-2-yl)methanol to 1H-benzo[d]imidazole-2-carbaldehyde by H2O2. The optimal reaction conditions were: molar ratios of catalyst to substrate to H2O2 set at 1: 1000: 3000; reaction temperature 50 °C; reaction time 5 h. The yield of (1H-benzo[d]imidazol-2-yl) methanol was 70%.


2013 ◽  
Vol 634-638 ◽  
pp. 628-631
Author(s):  
Yun Hui Long ◽  
Jun Ming Guo ◽  
Du Shu Huang ◽  
Gui Yang Liu

The catalytic synthesis of ethyl acetate from ethanol and acetic acid using Ti2SnC in liquid phase under the atmospheric pressure was studied. The influences of some factors such as catalyst usage, initial reactant molar ratio, reaction temperature and reaction time on acetic acid conversion rate of this reaction system were investigated. The acetic acid conversion rate of 88.12% is achieved while the molar ratio of alcohol and acid is 1:3.6, the amount of catalyst is 0.2000 g, the reaction temperature is 80 °C and the reaction time is 30min. The catalyst Ti2SnC is the ideal catalyst for synthesis of ethyl acetate for good catalytic performance, non-corrosive to equipment, easily separated from product and used repeatedly.


2013 ◽  
Vol 781-784 ◽  
pp. 190-193
Author(s):  
Mei Xu ◽  
Hua Yuan ◽  
Wei Liu ◽  
Jian Wang ◽  
Feng Zhen Yang

The synthesis of isoamyl acetate with ammonium 9-molybdate manganese heteropolyacid salt supported activated carbon as catalyst was studied. The optimum reaction conditions are obtained as follows: isoamyl alcohol to acetic acid molar ratio = 1.646, the weight of catalyst is 40% of total weigh, m (acidulate catalyst)=0.2g, m (water carrying reagent toluene) = 3ml, reaction time is about 63 minutes. Selectivity is 100% and conversion rate is 89.48%.


2014 ◽  
Vol 1004-1005 ◽  
pp. 703-706
Author(s):  
Xiao Yi Shen ◽  
Hong Mei Shao ◽  
Zhi Meng Wang ◽  
Yu Chun Zhai

Na2SO4 solution that was obtained from ZnSO4 solution after Zn2+ precipitation using Na2CO3 was used as raw material. The Na2SO4·7H2O crystallization was obtained through cooling the Na2SO4 solution, and then the solution was cycled. The Na2SO4·7H2O was dried and then put into a porcelain boat located in a roaster. When the reaction between Na2SO4 and CO ended, the Na2S was obtained. The influences of reaction temperature, reaction time and material thickness on the conversion rate were discussed. The appropriate reaction conditions were reaction temperature 675°C, reaction time 120min and material thickness less than 4cm.


2011 ◽  
Vol 396-398 ◽  
pp. 2411-2415 ◽  
Author(s):  
Ping Lan ◽  
Li Hong Lan ◽  
Tao Xie ◽  
An Ping Liao

Isoamyl acetate was synthesized from isoamylol and glacial acetic acid with strong acidic cation exchanger as catalyst. The effects of reaction conditions such as acid-alcohol ratio, reaction time, catalyst dosage to esterification reaction have been investigated and the optimum reaction conditions can be concluded as: the molar ratio of acetic acid to isoamylol 0.8:1, reaction time 2h, 25 % of catalyst (quality of acetic acid as benchmark). The conversion rate can reach up to 75.46%. The catalytic ability didn’t reduce significantly after reusing 10 times and the results showed that the catalyst exhibited preferably catalytic activity and reusability.


2011 ◽  
Vol 17 (3) ◽  
pp. 323-331 ◽  
Author(s):  
Jiancheng Zhou ◽  
Wu Dongfang ◽  
Birong Zhang ◽  
Yali Guo

A series of single-metal carbonates and Pb-Zn mixed-metal carbonates were prepared as catalysts for alcoholysis of urea with 1,2-propylene glycol (PG) for the synthesis of propylene carbonate (PC). The mixed carbonates all show much better catalytic activities than the single carbonates, arising from a strong synergistic effect between the two crystalline phases, hydrozincite and lead carbonate. The mixed carbonate with Pb/Zn=1:2 gives the highest yield of PC, followed by the mixed carbonate with Pb/Zn=1:3. Furthermore, Taguchi method was used to optimize the synthetic process for improving the yield of PC. It is shown that the reaction temperature is the most significant factor affecting the yield of PC, followed by the reaction time, and that the optimal reaction conditions are the reaction time at 5 hours, the reaction temperature at 180 oC and the catalyst amount at 1.8 wt%, resulting in the highest PC yield of 96.3%.


2013 ◽  
Vol 483 ◽  
pp. 38-41
Author(s):  
Shu Heng Liu

Take Waugh-Type (NH4)6[MnMo9O32] •8H2O absorbed on diatomite and prepared supported solid catalyst. The properties of the catalyst were studied through the synthesis of benzyl acetate. The appropriate reaction conditions were obtained by orthogonal test: mole ratio of acetic acid to benzyl alcohol was 2.5:1.0, the catalyst dosage was 1.6g, the water carrying agent toluene dosage was 2.5ml, reaction time was 150min, esterification yield was 87.4%. The catalyst are high catalytic activity and non- polluting, and could be reused.


2013 ◽  
Vol 781-784 ◽  
pp. 526-530 ◽  
Author(s):  
Shao Ying Li ◽  
Chun Mei Niu ◽  
Hua Yu Zhong

Series of cationic cassia tora gum (CCTG) were synthesized using 3-chloro-2-hydroxypropyl trimethyl ammonium chloride (CHPTAC) as cationic etherifying agent, isopropanol-water solution as dispersing agent, in presence of sodium hydroxide under different reaction conditions. The optimum ratio for preparing the cationic cassia tora gum are that CHPTAC-CTG molar ratio is 0.6:1; NaOH-CHPTAC molar ratio is 1.3:1.The optimum conditions are that reaction temperature is 55°Cand reaction time is 3.5 h. The cold water solubility was improved apparently. The solution transmittance has corresponding relationship with the nitrogen content (N%) in the certain range, and the maximum transmittance is up to 87.2%. N% increased with the increase of reaction time and stable N% can be obtained in shorter reaction time at higher reaction temperature. The products were characterized by 13C-NMR. The heat resistance of CTG and CCTG were analyzed.


2013 ◽  
Vol 781-784 ◽  
pp. 276-279
Author(s):  
Yu Hang Zhao ◽  
Li Cui ◽  
Da Zhi Wang ◽  
Tong Kuan Xu ◽  
Yong Peng Li

Butanone 1,2-propanediol ketal was synthesized by butanone and 1,2-propanediol as raw materials and sulfamic acid as catalyst. The effects of the mole ratio of raw materials agent, the dosage of the water-carrying agent and catalyst, reaction time on the product yield were discussed separately. Experimental results showed that sulfamic acid was a suitable catalyst for synthesizing of butanone 1,2-propanediol ketal. And the optimal reaction conditions are as follows: the mole ratio of butanone to 1,2-propanediol is 1:1.5, the amount of the catalyst is 2.2%, the water-carrying agent is 25ml, the reaction temperature is 358-378K and reaction time 3h. In this condition, the yield of production could reach 93.8%.


2013 ◽  
Vol 821-822 ◽  
pp. 1081-1084 ◽  
Author(s):  
Xian Ye Qin ◽  
Biao Liu ◽  
Bing Han ◽  
Wen Bo Zhao ◽  
Shui Sheng Wu ◽  
...  

The catalytic activity of many Lewis and Bronsted acid for the synthesis of diethyl carbonate (DEC) from ethyl carbamate (EC) and ethanol was evaluated in a bath reactor. Pyrophosphoric acid (H4P7O2) which showed the best activity was selected to further investigate the effect of reaction conditions, such as reaction temperature, catalyst dose and reaction time, on the yield of DEC. Under the optimal conditions, DEC yield can reach 29.1%.


Sign in / Sign up

Export Citation Format

Share Document