Degradation of Sarin Simulant DFP by Dielectric Barrier Discharge Plasma

2013 ◽  
Vol 781-784 ◽  
pp. 55-58 ◽  
Author(s):  
Hong Jie Zhao ◽  
Zhen Hu ◽  
Zhan Guo Li

The Dielectric Barrier Discharge plasma (DBD) plasma was used to treat Diisopropyl fluorophosphate (DFP, a stimulant of sarin) in the air. The influence factors of degradation efficiency, including power, carrier gas flow velocity and initial concentration of DFP were investigated. As a result, the degradation efficiency increased with the power increasing. The degradation efficiency increased fastly when the power less than 105W, but slowly when the power more than 105W. The degradation efficiency decreased obviously with the carrier gas flow velocity increasing, because the time of DFP stayed in plasma reactor decreased and the concentration of DFP increased. The degradation efficiency rose firstly and then fell with the initial DFP increasing, when the initial concentration was less than 80 mg/m3, but decreased with the the initial concentration increasing, when the initial concentration was more than 80 mg/m3. The main products were acetone, isopropanol, phosphoric acid, pyrophosphoric acid, carbon dioxide and water, analyzed by GC-MS. Reaction mechanism was discussed according to degradation products.

Author(s):  
GH Maleki ◽  
Ali R Davari ◽  
MR Soltani

Effects of dielectric barrier discharge plasma have been studied on the wake velocity profiles of a section of a 660 kW wind turbine blade in plunging motion in a wind tunnel. The corresponding unsteady velocity profiles show remarkable improvement when the plasma actuators were operating and the angles of attack of the model were beyond the static stall angles of the airfoil. As a result the drag force was considerably reduced. It is further observed that the plasma-induced flow attenuates the leading edge vortices that are periodically shed into wake and diminishes the large eddies downstream. The favorable effects of the plasma augmentation are shown to occur near the uppermost and lowermost positions of the plunging paths where the wake is primarily dominated by the vortices of the same sign. The wake structure in the presence of the flow induced by the plasma actuators shows that the actual effective angles of attack seen by the plunging airfoil reduces in comparison with that for the case of the plasma augmentation off situation.


Sign in / Sign up

Export Citation Format

Share Document