Detection and Characterization of Fatigue Induced Damage Using Electromechanical Impedance Technique

2009 ◽  
Vol 79-82 ◽  
pp. 2031-2034 ◽  
Author(s):  
Chee Kiong Soh ◽  
Yee Yan Lim

In this paper, the feasibility of damage detection and characterization using the EMI technique on high cycles fatigue induced damage is investigated. Cyclic tensile load is applied on a lab sized aluminium beam up to failure. Piezo-impedance transducer in the form of PZT patch (lead zirconate titanate) is surface bonded on the specimen for crack detection. Progressive shift in admittance signatures measured by the PZT patch corresponding to increase of loading cycles reflects effectiveness of the EMI technique in tracing the process of fatigue damage progression.

2017 ◽  
Vol 17 (4) ◽  
pp. 902-918 ◽  
Author(s):  
Xubin Lu ◽  
Yee Yan Lim ◽  
Chee Kiong Soh

Strength monitoring of early age concrete improves the efficiency of construction as it provides information on the optimum time for shoring removal and pre-stress transferring. Electromechanical impedance technique has been proven to be a useful tool for strength monitoring of cementitious materials. One of the key limitations of this technique is the lack of physical models, which resulted in strong reliance on statistical analysis tools to quantify the strength of structure being monitored. In this proof-of-concept study, a novel electromechanical impedance–based model with the potential of monitoring the strength of cementitious materials using the concept of Smart Probe is proposed. Instead of directly bonding a lead zirconate titanate patch on the host structure, a lead zirconate titanate was first surface-bonded on a pre-fabricated aluminum beam, which is termed Smart Probe. The Smart Probe was then partially embedded into cementitious materials for strength monitoring. The structural resonant frequencies of the Smart Probe can be identified from the conductance signatures measured from the lead zirconate titanate patch throughout the curing process and serve as strength indicator. By modeling the cementitious material as an elastic foundation supporting the Smart Probe, an analytical model was developed to predict the dynamic modulus of elasticity of cementitious materials based on the resonance frequency of the Smart Probe. Experimental study was carried out on a mortar slab specimen to verify the model and to investigate the performance of the Smart Probe. It was found that the dynamic modulus of elasticity of the host structure could be predicted from the conductance signatures using the proposed model. Compressive strength assessment was achieved by establishing an empirical relation with the dynamic modulus. The proposed electromechanical impedance–based model with Smart Probe is physically parametric in nature and shows high repeatability, which renders its superiority over the conventional statistical method–based electromechanical impedance technique for strength monitoring of cementitious materials.


Author(s):  
Samuel E. Hall ◽  
Jaime E. Regis ◽  
Anabel Renteria ◽  
Luis A. Chavez ◽  
Luis Delfin ◽  
...  

2019 ◽  
Vol 19 (2) ◽  
pp. 339-356 ◽  
Author(s):  
Balamonica K ◽  
Jothi Saravanan T ◽  
Bharathi Priya C ◽  
Gopalakrishnan N

Structural damage detection using unmanned Structural Health Monitoring techniques is becoming the need of the day with the technologies available presently. Sensors made of Lead Zirconate Titanate materials, due to their simplicity and robustness, are increasingly used as an effective monitoring sensor in Structural Health Monitoring. Continuous monitoring of the structures using Lead Zirconate Titanate sensors often results in a laborious data retrieval process due to the large amount of signal generated. To speed up the data retrieval process, a multi-sensing technique in which the Lead Zirconate Titanate patches are connected in series and parallel is proposed for structural damage detection. The proposed method is validated using an experimental investigation carried out on a reinforced concrete beam embedded with smart Lead Zirconate Titanate sensor units. The beam is subjected to damage, and the location of damage is identified using conductance signatures obtained from patches sensed individually and through multiplexing. This article proposes an effective methodology for selection of patches to be connected in series/parallel to maximise the efficiency of damage detection. Damage quantification using conventional statistical metrics such as root mean square deviation, mean absolute percentage deviation and cross correlations are found to be ineffective in identifying the location of damage from the multiplexed signatures. In turn, dynamic metrics such as moving root mean square deviation, moving mean absolute percentage deviation and moving cross correlation with overlapped moving blocks of data are proposed in the present work and their ability to detect the damage location from multiplexed signatures is discussed.


Sign in / Sign up

Export Citation Format

Share Document