Study on the Cold Closed-Die Forging of Planetary Bevel Gears

2013 ◽  
Vol 803 ◽  
pp. 321-325
Author(s):  
Feng Kang ◽  
E Chuan Yang ◽  
Yan Bin Wang ◽  
Qiang Chen ◽  
Da Yu Shu

Taking the Planetary Bevel Gears as an object, the characteristic of cold Closed-die Forging was studied. By Using the FEM, the flowing rule of metal in the process of cold forging were analyzed, which is composed of dual-direction extrusion, upsetting and filling the gear form. The results show that each district of cavity was filled completely at the end of forging, without corner collapse, fold or crack. Taken the lower die as an example, the distribution of die stress was also analyzed. The results of numerical simulation were proved by the experiments, meanwhile the high precision and quality forging was formed. To the gears, the cold closed-die forging can not only ensure the dimensional precision, but also improve the capability of the gear, while obviously reduce materials consumption.

2008 ◽  
Vol 575-578 ◽  
pp. 517-524 ◽  
Author(s):  
Yao Zong Zhang ◽  
Jian Bo Huang ◽  
Xue Lin ◽  
Quan Shui Fang

The cold closed-die forging process of the gear is a kind of new technique of the precise forming of gear in recent years. In this paper, the cold closed-die forging process of differential satellite gear in car was analyzed through numerical simulation method. Forming mold was designed with Pro/E Wildfire2.0 which included four components : upper punch, lower punch, tooth shape upper die and lower die for Normal Cone. The three-dimensional models of satellite bevel gear mould were built and imported into numerical simulation software DEFORM-3D. Because the gear has the uniform circumferential features, in order to save time and improve the accuracy, only one tooth was simulated, and the full simulation outcome of 10 teeth was mirrored from this one. Through the numerical simulation analysis of DEFORM-3D, the instantaneous deformation and stress filed were gained. Forming defects were forecasted and the cold closed-die forging rule for satellite gear used in car was obtained which can provide effective references for no-flash cold forging process of planet bevel gear and the mold design.


2008 ◽  
Vol 575-578 ◽  
pp. 204-209 ◽  
Author(s):  
De Ying Zhao ◽  
Lian Dong Zhang ◽  
Hui Xue Sun

Steering knuckle, which has strict requirements with regard to dimensional precision and quality, is a key component in cars. Conventional plastic forming methods are involved with intricate procedures and high energy consumptions. Normally, a 40 MN hot die forging press or a 100 KJ electro-hydraulic hammer is required to produce the steering knuckle. Closed die forging, which is a new precision forming technology developed in recent years, has some virtues, such as good mechanical properties, easy to form and improving of metal plastic deformation. Aiming at Jetta steering knuckle in this paper, the technology of two forging steps in one heat is presented. This technology is mainly composed of precision pre-forging, which is a closed die extrusion with the extrusion belt, and open finish-forging. The pre-forging process and finish-forging process are numerically simulated using the FEM software DEFORM-3D. For the closed die extrusion forming process, which is the key component of the technology, some key problems were researched, such as the flowing and filling regularity, extrusion-belt length, punch size, punch movement, lubrication and the relationship between the clamping pressure and the extrusion pressure. For the finish-forging process, the flowing and filling regularity of the finish-forging part was studied to verify the correct shape and dimension of the pre-forging part. Numerical simulation with regard to the pre-forging process shows that the closed die forging can not only help to form the pre-forging part, but also decrease the extrusion pressure to be less than 8 MN, extend the mould’s service life and increase the utilization ratio of materials to be more than 75%. Numerical simulation of the finish-forging process shows that the pre-forging part design is rational. In addition, the forging experiments were carried out using the dies designed in particular. The experiments show that the technology is feasible and can markedly improve the mechanical property of the forging piece.


2021 ◽  
pp. 27-32
Author(s):  
Pham Quang Trung ◽  
Nguyen Hoang Dung ◽  
Nguyen Nhat Minh

2006 ◽  
Vol 177 (1-3) ◽  
pp. 256-260 ◽  
Author(s):  
M. Skunca ◽  
P. Skakun ◽  
Z. Keran ◽  
L. Sidjanin ◽  
M.D. Math

2013 ◽  
Vol 441 ◽  
pp. 435-438
Author(s):  
Jin Yang ◽  
Ping Wang

A universal joint fork is one of the key parts of the automotive and tractor drive shaft system, which needs high requirements in dimensional accuracy and product quality. In this study, the numerical simulation analysis of closed-die forging of the universal joint fork was carried out using the rigid-visco-plastic finite element model. In view of formation, heat transfer and heating generation coupled, the variation rules of forming load, stress field and strain field were obtained. The numerical simulation results show that good process parameters conditions can effectively control forming load, enhance metal flow and improve die life.


2011 ◽  
Vol 268-270 ◽  
pp. 241-246 ◽  
Author(s):  
Feng Xu ◽  
Ke Min Xue ◽  
Ping Li ◽  
Dong Mei Gong ◽  
Gang Chao Wang ◽  
...  

The cold closed-die forging of spur gears brings the problems of great forming forces , low life of the dies and insufficent corner filling. The two-step forming technology is presented. First, the billet is pre-forged by closed-die forging for getting most of tooth profile. Second, the gear is finish-forging by local loading. The finite element method is used to simulate the cold forging process.The strain distributions, the stress distributions, velocity distributions and load-stroke curve are investigated.. The simulation results show that the technology can guarantee the full filling effect, and decrease the forming force remarkably. The results of simulation and analysis were verified by the physics experiment.


2019 ◽  
Vol 8 (1) ◽  
pp. 333-343 ◽  
Author(s):  
Danielle Cristina Camilo Magalhães ◽  
Allana Lauren Pratti ◽  
Andrea Madeira Kliauga ◽  
José Benaque Rubert ◽  
Maurizio Ferrante ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document