hardness distribution
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 44)

H-INDEX

13
(FIVE YEARS 2)

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 86
Author(s):  
Hao Pang ◽  
Gracious Ngaile

The cavitation peening (CP) and cavitation abrasive jet polishing (CAJP) processes employ a cavitating jet to harden the surface or remove surface irregularities. However, a zero incidence angle between the jet and the surface limits the efficiency of these two processes. This limitation can be improved by introducing a secondary jet. The secondary jet interacts with the main jet, carrying bubbles to the proximity of the workpiece surface and aligning the disordered bubble collapse events. Through characterizing the treated surface of AL6061 in terms of the hardness distribution and surface roughness, it was found out that the secondary jet can increase the hardening intensity by 10%, whereas the material removal rate within a localized region increased by 66%. In addition, employing multiple secondary jets can create a patched pattern of hardness distribution. Another finding is that the hardening effect of the cavitation increases with the processing time at first and is then saturated.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1482
Author(s):  
Shaopeng Yang ◽  
Peifeng Cheng ◽  
Fangzhong Hu ◽  
Wenchao Yu ◽  
Chi Zhang ◽  
...  

As research of the high cycle fatigue of carburized gear steel could not meet the status quo of longer and longer service lives, research of very high cycle fatigue (VHCF) performance has become the focus of current research. The VHCF properties of case-hardening steel 18CrNiMo7-6 after being carburized with gradient hardness distribution were investigated by means of ultrasonic fatigue tests. The results showed that the carburized specimens with a case hardness of 705 HV and core hardness of 530 HV showed VHCF phenomenon, and the fatigue lives continuously increased to even 109 cycles as the stress amplitude decreased to about 500 MPa. Observations of the fracture surfaces of the fatigue specimens showed that the fatigue crack initiation sites were located in the transition area with the hardness at about 580 HV. It was found that the transition area had low VHCF properties, since the core did not show VHCF phenomenon, and the case had a higher hardness. A fine microstructure was observed in the granular bright facet (GBF) area, and the stress intensity factor ΔKGBF was measured to be 3.04 MPam−1/2. The 109 cycles fatigue life was predicted based on the inclusion size, and the 1010 cycles fatigue life was 490 MPa based on the prediction model.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012208
Author(s):  
A Shchelkunov ◽  
I Egorov ◽  
A Fomin

Abstract In this work, the mechanical properties (microhardness) of a titanium disk after induction heat treatment (IHT) were studied. The influence of the processing parameters (inductor current and temperature) on the distribution of microhardness over the cross-section of the experimental samples was established.


2021 ◽  
Vol 1135 (1) ◽  
pp. 012006
Author(s):  
Georgi Nikolaev Nikolov ◽  
Anders Noel Thomsen ◽  
Morten Kristiansen

Abstract Laser forming is a contactless thermal forming process that can be applied for both single and double-curved geometries. When it comes to prototyping and small batch production, laser forming has the potential to compete with conventional sheet-metal forming processes; however, an investigation of the relationship between process parameters, hardness distribution and the bend rate is lacking. This study examines the influence of using different sets of processing parameters on the bend rate and the hardness distribution. ANSI 304 stainless steel samples of 1 and 3 mm thickness are laser formed up to 90° with a bend radius equal to their thickness. A theoretical discussion of the material’s hardening kinetics is used to generalize the results. Micro-Vickers hardness test is used to measure the hardness distribution along the 3 mm samples to support the theoretical discussion. The results show that the bend rate increases when using different sets of process parameters; furthermore, the bend arc length has shown to have a significant influence over the bend rate. An increase of hardness is observed on the bottom side of the laser formed samples, indicating potential strain hardening.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeong-Won Choi ◽  
Weihao Li ◽  
Kohsaku Ushioda ◽  
Hidetoshi Fujii

AbstractIt is known that one of the main concerns associated with the conventional welding of precipitation-strengthened Al alloys is the formation of softening regions, resulting in the deterioration of mechanical properties. In this study, we show that linear friction welding (LFW) can completely suppress softening regions in precipitation-strengthened AA6061-T6 alloy by introducing a large shear strain and by controlling the interfacial temperature. We found that the LFW process resulted in an extremely low interfacial temperature; it decreased as the applied pressure increased from 50 to 240 MPa. This approach can essentially suppress both softening and hardening regions, leading to uniform hardness distribution in Al joints. The high-pressure LFW process demonstrated here can thus provide an innovated guidance to obtain high-performance Al alloy joints and be extended to other precipitation-strengthened Al alloys, which undergo high-temperature softening.


2021 ◽  
Vol 1033 ◽  
pp. 3-7
Author(s):  
Koshiro Mizobe ◽  
Yuto Nakamura ◽  
Yuki Yano ◽  
Takahiro Matsueda ◽  
Katsuyuki Kida

It is important to reveal the mechanism of crack growth from non-metallic inclusions because it commonly causes the origin of flaking fracture. In order to observe the cracks initiated from non-metallic inclusions under contact pressure, we performed one-point rolling contact fatigue tests using furnace-induction heated SUJ2 steel. We measured the hardness distribution of the furnace-induction heated (FIH) specimen and observed cracks with the inclusions at cross-sections.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 812
Author(s):  
Mihály Réger ◽  
Richárd Horváth ◽  
Attila Széll ◽  
Tamás Réti ◽  
Viktor Gonda ◽  
...  

The aim of this study is to exhibit the mutual connection between surface and in depth hardness values in the case of surface-treated metal samples with inhomogeneous hardness distribution in the surface layer. The reason for surface treatments of metal alloys is most commonly to increase the hardness and wear resistance at the surface. Case depth, as a result of surface treatment and the in-depth hardness distribution, can be determined by measuring the hardness of a section perpendicular to the treated surface and by metallographic examination. The result of heat treatment can also be checked rapidly by surface hardness testing. Surface hardness carries only indirect information regarding case depth and hardness distribution. Surface and cross-sectional hardness can be related to the mathematical modeling of the plastic zone developing in the indentation process. The mathematical model applied in this study allows the conversion of the surface hardness function into the in-depth hardness function and vice-versa. The calculation method presented was validated by analyzing the hardness data of nitrocarburized samples of various case depths. The validation result proves that cross-sectional hardness distribution can be adequately estimated by surface hardness data in the case of a surface layer with monotonically decreasing hardness distribution.


Sign in / Sign up

Export Citation Format

Share Document