FFT Method for Acquiring the GPS Signal

2013 ◽  
Vol 816-817 ◽  
pp. 594-597
Author(s):  
Shu Hai Wang ◽  
Shu Wang Chen ◽  
Shao Dong Yin

To improve the speed of the GPS signal acquisition, a new design method based on the FFT is presented in the paper. It has many advantages over the existing acquisition in time-domain. The detailed design procedure of the new method is illustrated. By using it to acquire the real GPS signal, we can conclude the practicability of this new method. This design utilizes fewer resources in hardware design and achieves faster acquisition.

2018 ◽  
Vol 69 (2) ◽  
pp. 117-127
Author(s):  
Štefan Bucz ◽  
Alena Kozáková ◽  
Vojtech Veselý

AbstractThe paper presents a new original robust PID design method for non-minimum phase plants to achieve closed-loop performance prescribed by the process technologist in terms of settling time and maximum overshoot, respectively. The proposed design procedure has two steps: first, the uncertain system is identified using external harmonic excitation signal with frequency, second, the controller of the nominal system is designed for specified gain margin. A couple of parameters is obtained from the time domain performance specification using quadratic regression curves, the so-called performance Bparabolas so, as to simultaneously satisfy robust closed-loop stability conditions. The main benefits of the proposed method are universal applicability for systems with both fast and slow dominant dynamics as well as performance specification using time domain criteria. The proposed PID design method has been verified on a set of benchmark systems.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Marco Ajello ◽  
Nicola Marengo ◽  
Paolo Pacca ◽  
Federico Pecoraro ◽  
Francesco Zenga ◽  
...  

2019 ◽  
Vol 629 ◽  
pp. A112 ◽  
Author(s):  
B. M. Giuliano ◽  
A. A. Gavdush ◽  
B. Müller ◽  
K. I. Zaytsev ◽  
T. Grassi ◽  
...  

Context. Reliable, directly measured optical properties of astrophysical ice analogues in the infrared and terahertz (THz) range are missing from the literature. These parameters are of great importance to model the dust continuum radiative transfer in dense and cold regions, where thick ice mantles are present, and are necessary for the interpretation of future observations planned in the far-infrared region. Aims. Coherent THz radiation allows for direct measurement of the complex dielectric function (refractive index) of astrophysically relevant ice species in the THz range. Methods. We recorded the time-domain waveforms and the frequency-domain spectra of reference samples of CO ice, deposited at a temperature of 28.5 K and annealed to 33 K at different thicknesses. We developed a new algorithm to reconstruct the real and imaginary parts of the refractive index from the time-domain THz data. Results. The complex refractive index in the wavelength range 1 mm–150 μm (0.3–2.0 THz) was determined for the studied ice samples, and this index was compared with available data found in the literature. Conclusions. The developed algorithm of reconstructing the real and imaginary parts of the refractive index from the time-domain THz data enables us, for the first time, to determine the optical properties of astrophysical ice analogues without using the Kramers–Kronig relations. The obtained data provide a benchmark to interpret the observational data from current ground-based facilities as well as future space telescope missions, and we used these data to estimate the opacities of the dust grains in presence of CO ice mantles.


2012 ◽  
Vol 479-481 ◽  
pp. 1709-1713
Author(s):  
Kai An Yu ◽  
Tao Yang ◽  
Chang Zhi Gong

In view of the problems of large stress and severe bearing heating in double-drum winch at present, this paper adopted a new method to enhance bearing capacity for double-drum winch by adding anti-pressure wheels between two drums. Finite element methods were used to analyze the strength of 4000kN-traction double-drum winches with anti-pressure wheels and without anti-pressure wheels respectively. The results of the analysis revealed that the stress of the cylinder bearing decreased from 264MPa to 167MPa. The new method by adding anti-pressure wheels had remarkably improved the endurance of the bearing. Therefore, the design method can be widely used in large-traction double-drum winch.


2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110349
Author(s):  
Huiqiang Guo ◽  
Mingzhe Li ◽  
Pengfei Sun ◽  
Changfeng Zhao ◽  
Wenjie Zuo ◽  
...  

Rotary-wing unmanned aerial vehicles (UAVs) are widespread in both the military and civilian applications. However, there are still some problems for the UAV design such as the long design period, high manufacturing cost, and difficulty in maintenance. Therefore, this paper proposes a novel design method to obtain a lightweight and maintainable UAV frame from configurable design to detailed design. First, configurable design is implemented to determine the initial design domain of the UAV frame. Second, topology optimization method based on inertia relief theory is used to transform the initial geometric model into the UAV frame structure. Third, process design is considered to improve the manufacturability and maintainability of the UAV frame. Finally, dynamic drop test is used to validate the crashworthiness of the UAV frame. Therefore, a lightweight UAV frame structure composed of thin-walled parts can be obtained and the design period can be greatly reduced via the proposed method.


Sign in / Sign up

Export Citation Format

Share Document