scholarly journals Robust guaranteed performance PID controller design for non-minimum phase plants

2018 ◽  
Vol 69 (2) ◽  
pp. 117-127
Author(s):  
Štefan Bucz ◽  
Alena Kozáková ◽  
Vojtech Veselý

AbstractThe paper presents a new original robust PID design method for non-minimum phase plants to achieve closed-loop performance prescribed by the process technologist in terms of settling time and maximum overshoot, respectively. The proposed design procedure has two steps: first, the uncertain system is identified using external harmonic excitation signal with frequency, second, the controller of the nominal system is designed for specified gain margin. A couple of parameters is obtained from the time domain performance specification using quadratic regression curves, the so-called performance Bparabolas so, as to simultaneously satisfy robust closed-loop stability conditions. The main benefits of the proposed method are universal applicability for systems with both fast and slow dominant dynamics as well as performance specification using time domain criteria. The proposed PID design method has been verified on a set of benchmark systems.

2021 ◽  
Vol 26 (1) ◽  
pp. 21
Author(s):  
Ahmad Taher Azar ◽  
Fernando E. Serrano ◽  
Nashwa Ahmad Kamal

In this paper, a loop shaping controller design methodology for single input and a single output (SISO) system is proposed. The theoretical background for this approach is based on complex elliptic functions which allow a flexible design of a SISO controller considering that elliptic functions have a double periodicity. The gain and phase margins of the closed-loop system can be selected appropriately with this new loop shaping design procedure. The loop shaping design methodology consists of implementing suitable filters to obtain a desired frequency response of the closed-loop system by selecting appropriate poles and zeros by the Abel theorem that are fundamental in the theory of the elliptic functions. The elliptic function properties are implemented to facilitate the loop shaping controller design along with their fundamental background and contributions from the complex analysis that are very useful in the automatic control field. Finally, apart from the filter design, a PID controller loop shaping synthesis is proposed implementing a similar design procedure as the first part of this study.


Author(s):  
Tsunehiro Wakasugi ◽  
Toru Watanabe ◽  
Kazuto Seto

This paper deals with a new system design method for motion and vibration control of a three-dimensional flexible shaking table. An integrated modeling and controller design procedure for flexible shaking table system is presented. An experimental three-dimensional shaking table is built. “Reduced-Order Physical Model” procedure is adopted. A state equation system model is composed and a feedback controller is designed by applying LQI control law to achieve simultaneous motion and vibration control. Adding a feedforward, two-degree-of-freedom control system is designed. Computer simulations and control experiments are carried out and the effectiveness of the presented procedure is investigated. The robustness of the system is also investigated.


2015 ◽  
Vol 798 ◽  
pp. 261-265
Author(s):  
Miao Yu ◽  
Chao Lu

Identification and control are important problems of power system based on ambient signals. In order to avoid the model error influence of the controller design, a new iterative identification and control method is proposed in this paper. This method can solve model set and controller design of closed-loop power system. First, an uncertain model of power system is established. Then, according to the stability margin of power system, stability theorem is put forward. And then controller design method and the whole algorithm procedure are given. Simulation results show the effective performance of the proposed method based on the four-machine-two-region system.


2021 ◽  
Vol 72 (5) ◽  
pp. 330-336
Author(s):  
Vojtech Veselý

Abstract In this paper, the original method to design of PID robust decentralized controller is obtained for linear time-invariant large-scale uncertain system. The controller design procedure performs on the subsystem level such that the closed-loop stability and performance of complex system in the frame of the designer chosen controller design procedure ( H 2 , L 2 -gain, pole placement,...) is guaranteed. The proposed method is implemented in two steps. In the first step, the required dynamic properties of the subsystems are determined so as to ensure the stability of complex system. In the second step, on the subsystem level a decentralized controller design is provided using any suitable design procedure for each subsystem.


2003 ◽  
Vol 125 (1) ◽  
pp. 134-138 ◽  
Author(s):  
Levent Gu¨venc¸

A new and simple repetitive controller design procedure in controller parameter space, where the structure of the filters in the repetitive controller are fixed from the start and parameters within these filters are tuned, is presented here. This approach results in simple and physically meaningful controllers that are easily implementable. The design method is based on mapping frequency domain performance specifications into a chosen plane of controller parameters. Sensitivity function magnitude bounds and a relative stability measure are chosen as the frequency domain specifications to be mapped into controller parameter space here. The design method is illustrated numerically in the context of a servohydraulic material testing machine application available in the literature.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 437 ◽  
Author(s):  
Sangmin Suh

This note presents an optimal design method to enhance image quality in optical image stabilization (OIS) systems. First of all, performance limitations of conventional methods are shown and secondly, a new design framework based on convex optimization is proposed. The resulting controller essentially stabilizes the closed loop systems because the proposed method is derived from Lyapunov stability. From the test results, it is confirmed that this method reduces the effect of hand vibrations and makes images sharp. Additionally, it is shown that the proposed method is also effective in robot vision and recognition rate of deep neural network (DNN) based traffic signs and pedestrians detection in automotive applications. This note has three main contributions. First, performance limitations of the conventional method are shown. Second, from the relation between sensitivity and complementary sensitivity functions, an indirect design method for performance improvement is proposed, and finally, stability guaranteed optimal design is proposed. Unlike conventional methods, the proposed method does not require addition filters to suppress resonances of the plant and this note highlights phases of the closed loop systems on removing external vibrations.


Author(s):  
Thomas E. Alberts ◽  
Hemanshu R. Pota

Abstract This paper presents a general proof of a result due to Fuller and Burdisso, that asserts that system eigenvalues can be modified using feedforward control. The original result applies to the case of steady-state harmonic excitation. This paper extends that work to allow for broadband excitation. The results apply to any flexible structure representable using modal expansion, and are applicable to systems with non-minimum phase zeros. A design procedure is presented to allow arbitrary assignment of the controlled system’s poles, using a fixed feedforward compensator.


Sign in / Sign up

Export Citation Format

Share Document