Hot Deformation Behavior of Ultra-Fine Grained Pure Ti

2013 ◽  
Vol 829 ◽  
pp. 10-14 ◽  
Author(s):  
Seyed Vahid Sajadifar ◽  
Guney Guven Yapici

In the present study, compression tests were performed at a strain rate of 0.001 to 0.1 sˉ1 and in the range of 600°C to 900°C to investigate the high temperature deformation behavior and flow stress model of commercially pure titanium after severe plastic deformation (SPD). It was found that the effects of temperature and strain rate are significant in dictating the steady state flow stress levels. Flow accompanied by thermal softening was observed due to a combination of dynamic recovery and recrystallization for deformation at or above 600°C. Furthermore, microstructural evolutions of the as processed and hot deformed material were investigated. Based on constitutive equations, the flow stress was modeled for this light ultra-fine grained (UFG) material. The validity of the model was demonstrated with satisfactory agreement in light of the experimental mechanical behavior.

2017 ◽  
Vol 36 (7) ◽  
pp. 701-710
Author(s):  
Jun Cai ◽  
Kuaishe Wang ◽  
Xiaolu Zhang ◽  
Wen Wang

AbstractHigh temperature deformation behavior of BFe10-1-2 cupronickel alloy was investigated by means of isothermal compression tests in the temperature range of 1,023~1,273 K and strain rate range of 0.001~10 s–1. Based on orthogonal experiment and variance analysis, the significance of the effects of strain, strain rate and deformation temperature on the flow stress was evaluated. Thereafter, a constitutive equation was developed on the basis of the orthogonal analysis conclusions. Subsequently, standard statistical parameters were introduced to verify the validity of developed constitutive equation. The results indicated that the predicted flow stress values from the constitutive equation could track the experimental data of BFe10-1-2 cupronickel alloy under most deformation conditions.


2012 ◽  
Vol 538-541 ◽  
pp. 945-950 ◽  
Author(s):  
Jiang Kun Fan ◽  
Hong Chao Kou ◽  
Min Jie Lai ◽  
Bin Tang ◽  
Hui Chang ◽  
...  

The effects of processing parameters on deformation behavior of a new near β titanium alloy were investigated by using compression tests. The experiments were carried out in the Gleeble-3800 thermal and mechanical simulator in the temperature range of 770-970°C and strain rate range of 10-3-10s-1, and height direction reduction of 70%. The results show that the flow stress of Ti-7333 titanium alloy increases obviously with the strain and reaches a peak, then decreases to a steady value. The steady and peak stress significantly decreases with the increase of deformation temperature and decrease of strain rate. The flow stress model of Ti-7333 titanium alloy during high temperature deformation was established by using the regression method. The average relative difference between the calculated and experimental flow stress is 6.33%. The flow stress model can efficiently predict the deformation behavior of Ti-7333 titanium alloy during high temperature deformation.


2014 ◽  
Vol 922 ◽  
pp. 807-812 ◽  
Author(s):  
Robert Werner ◽  
Emanuel Schwaighofer ◽  
Martin Schloffer ◽  
Helmut Clemens ◽  
Janny Lindemann ◽  
...  

In the present study the high-temperature deformation behavior of a caste and subsequently HIPed β-solidifying γ-TiAl-based alloy with a nominal composition of Ti-43.5Al-4Nb-1Mo-0.1B (in at. %), termed TNM alloy, is investigated. At room temperature this alloy consists of ordered γ-TiAl, α2-Ti3Al and βo-TiAl phases. By increasing the temperature, α2and βodisorder to α and β, respectively. In order to get a better understanding of dynamic recovery and recrystallization processes during thermomechanical processing, isothermal compression tests on TNM specimens are carried out on a Gleeble®3500 simulator. These tests are conducted at temperatures ranging from 1100 °C to 1250 °C (in the α/α2+β/βo+γ phase field region) applying strain rates in the range of 0.005 s-1to 0.5 s-1up to a true strain of 0.9. The evolution of microstructure along with the dynamically recrystallized grain size during hot deformation is examined by scanning electron microscopy (SEM). The flow softening behavior after reaching the peak stress in the true stress-true strain curve is attributed to dynamic recrystallization. By using the Zener-Hollomon parameter as a temperature-compensated strain rate the dependence of flow stress on temperature and strain rate is shown to follow a hyperbolic-sine Arrhenius-type relationship.


2011 ◽  
Vol 117-119 ◽  
pp. 893-896
Author(s):  
Yong Liu ◽  
Yong Wei Sun ◽  
Bao Hong Tian ◽  
Jiang Feng ◽  
Yi Zhang

Hot deformation behavior of the 30%Mo/Cu-Al2O3 composite was investigated by hot compression tests on Gleeble-1500D thermal simulator in the temperature ranges of 450~750°C and the strain rate ranges of 0.01~5s-1, as the total strain is 0.7. The results show that the peak stress increases with the decreased deformation temperature or the increased strain rate. Based on the true stress-strain curves, the established constitutive equation represents the high-temperature flow behavior of the composite, and the calculated flow stresses are in good agreement with the high- temperature deformation experimental results.


2007 ◽  
Vol 546-549 ◽  
pp. 749-754 ◽  
Author(s):  
Hui Zhong Li ◽  
Xin Ming Zhang ◽  
Min Gan Chen ◽  
Ying Liu ◽  
Hui Gao

The deformation behavior of 2519 aluminum alloy was studied by isothermal compression by Gleeble-1500 simulator in the temperature range from 300 to 450°C under the strain rates of 0.01~10s-1. The results showed that the flow stress was controlled by strain rate and deformation temperature. The flow stress increased with strain rate and decreased with deformation temperature. The flow stress of 2519 aluminum alloy increased with strain and to the constant values at three strain rates of 0.01 s-1,0.1 s-1and1 s-1, indicating the dynamic recovery to occur. The flow stress decreased after a peak value with increase of strain at strain rate 10s-1 and deformation temperature higher than 350°C, showing partly dynamic recrystallization. The flow stress of 2519 aluminum alloy during high temperature deformation can be represented by Zener-Hollomon parameter.


2010 ◽  
Vol 146-147 ◽  
pp. 701-704
Author(s):  
Yi Zhang ◽  
Bao Hong Tian ◽  
Ping Liu ◽  
Shu Guo Jia ◽  
Li Fan ◽  
...  

The flow stress behavior of Cu-2.0Ni-0.5Si alloy during hot compression deformation was studied by isothermal compression test at Gleeble-1500D thermal-mechanical simulator.Dynamic recrystallization and dynamic recovery during high temperature deformation have been investigated by means of compression tests in the temperature and strain rate ranges of 873 to 1073 K and 0.01 to 5s-1 under maxium strain of 60%. The results show the flow stress was controlled by both strain rate and deforming temperature,the flow stress decreases with the increase of deforming temperature,while increases with the increase of strain rate.The hot deformation equation is e& = e28.47[sinh(0.013s )]5.52 exp(-245.4´103 / RT ) .


2011 ◽  
Vol 704-705 ◽  
pp. 135-140 ◽  
Author(s):  
Yi Zhang ◽  
Bao Hong Tian ◽  
Ping Liu

The hot deformation behavior of Cu-Ni-Si-P alloy have been investigated by means of isothermal compression tests on a Gleeble-1500D thermal mechanical simulator in the temperature ranges of 873-1073 K and strain rate ranges of 0.01-5s-1. The results show that the dynamic recryatallization occurs in Cu-Ni-Si-P alloy during hot deformation. The peak stress during hot deformation can be described by the hyperbolic sine function. The influence of deformation temperature and strain rate on the peak stress can be represented using the Zener-Hollomon parameter. Moreover, the activation energy for hot deformation of Cu-Ni-Si-P alloy is determined to be 485.6 kJ / mol within the investigated ranges of deformation temperature and strain rate. The constitutive equation of the Cu-Ni-Si-P alloy is also established. Keywords: Cu-Ni-Si-P alloy; Hot deformation; Dynamic recrystallization; Zener-Hollomon parameter.


2019 ◽  
Vol 944 ◽  
pp. 135-141
Author(s):  
Hua Mei Sun ◽  
Yun Lian Qi ◽  
Wei Liu ◽  
Xiao Nan Mao

The deformation behavior in isothermal compression of Ti-5Al-4Mo-2Cr-4Zr-2Sn-1Fe alloy was investigated at the deformation temperature of 800°C, 850°C, 900°C, 950°C and 1000°C, the strain rate of 0.01s-1, 0.1s-1, 1.0s-1and 10.0s-1, and the height reduction of 70%. The flow stress increases rapidly with the increasing of strain at the beginning of deformation. When the strain exceeds a certain value, the flow stress begins to decline and becomes steady. With the increasing of deformation temperature and decreasing of strain rate, the steady stress and peak stress decrease significantly. The effect of strain on the processing maps of Ti-5Al-4Mo-2Cr-4Zr-2Sn-1Fe alloy is obvious. As the strain increases, the instable region moves towards high temperature and high strain rate area. Meanwhile, the contour of efficiency of power dissipation becomes more and more intensive, and the region with high efficiency of power dissipation reduces. Strain rate of 0.01s-1and deformation temperature of 900°C are the optimum processing parameters for Ti-5Al-4Mo-2Cr-4Zr-2Sn-1Fe alloy forging under strain of 0.3.


2007 ◽  
Vol 551-552 ◽  
pp. 365-372 ◽  
Author(s):  
C.H. Park ◽  
Young Gun Ko ◽  
Chong Soo Lee ◽  
Kyung Tae Park ◽  
Dong Hyuk Shin ◽  
...  

High-temperature deformation behavior and microstructural evolution process of ELI Ti-6Al-4V alloy having martensite microstructure were investigated with the variation of strain, strain rate and temperature. A series of hot compression tests was carried out isothermally for martensite microstructure at the true strain range of 0.6 to 1.4, strain rate range of 10-3 s-1 to 1 s-1 and temperature range of 700 oC to 950 oC. The processing maps for martensite microstructures were constructed on the basis of dynamic materials model (DMM). At the strain rate higher than 10-2 s-1 and the temperature lower than 750 oC regions of flow instability such as adiabatic shear band and micro-cracking were observed. Also, after imposing an effective strain of ≈ 1.4, deformed microstructure showed the significant kinking/bending behavior of lamellae resulting in the dynamic globularization associated with the fragmentation of beta-phase. The effects of strain, strain rate and temperature for dynamic globularization were discussed based on the microstructure and efficiency of power dissipation.


2014 ◽  
Vol 852 ◽  
pp. 66-70 ◽  
Author(s):  
Juan Hua Su ◽  
Ya Wei Han ◽  
Feng Zhang Ren ◽  
Zhi Qiang Chen

The dynamic recrystallization of commercially pure titanium was investigated by compression tests on Gleeble-1500D thermal simulation test machine at temperature of 700950 °C and strain rate of 0. 015 s1. The total compression deformation is 0.7(true strain). The kinetics of dynamic recrystallization of commercially pure titanium at 950 °C was modeled by Avrami equation. The results show that the dynamic recovery and recrystallization obviously occur during compression. The flow stress increases to a peak value and gradually decreases to a steady state. The flow stress is decreased with the increase of deformation temperature and it is increased with the increase of strain rate. The Avrami kinetics model of dynamic recrystallization of commercially pure titanium at 950 °C is obtained .


Sign in / Sign up

Export Citation Format

Share Document