Dynamic Recrystallization Behavior of Pure Titanium

2014 ◽  
Vol 852 ◽  
pp. 66-70 ◽  
Author(s):  
Juan Hua Su ◽  
Ya Wei Han ◽  
Feng Zhang Ren ◽  
Zhi Qiang Chen

The dynamic recrystallization of commercially pure titanium was investigated by compression tests on Gleeble-1500D thermal simulation test machine at temperature of 700950 °C and strain rate of 0. 015 s1. The total compression deformation is 0.7(true strain). The kinetics of dynamic recrystallization of commercially pure titanium at 950 °C was modeled by Avrami equation. The results show that the dynamic recovery and recrystallization obviously occur during compression. The flow stress increases to a peak value and gradually decreases to a steady state. The flow stress is decreased with the increase of deformation temperature and it is increased with the increase of strain rate. The Avrami kinetics model of dynamic recrystallization of commercially pure titanium at 950 °C is obtained .

2013 ◽  
Vol 829 ◽  
pp. 10-14 ◽  
Author(s):  
Seyed Vahid Sajadifar ◽  
Guney Guven Yapici

In the present study, compression tests were performed at a strain rate of 0.001 to 0.1 sˉ1 and in the range of 600°C to 900°C to investigate the high temperature deformation behavior and flow stress model of commercially pure titanium after severe plastic deformation (SPD). It was found that the effects of temperature and strain rate are significant in dictating the steady state flow stress levels. Flow accompanied by thermal softening was observed due to a combination of dynamic recovery and recrystallization for deformation at or above 600°C. Furthermore, microstructural evolutions of the as processed and hot deformed material were investigated. Based on constitutive equations, the flow stress was modeled for this light ultra-fine grained (UFG) material. The validity of the model was demonstrated with satisfactory agreement in light of the experimental mechanical behavior.


Author(s):  
James Magargee ◽  
Fabrice Morestin ◽  
Jian Cao

Uniaxial tension tests were conducted on thin commercially pure titanium sheets subjected to electrically-assisted deformation using a new experimental setup to decouple thermal-mechanical and possible electroplastic behavior. The observed absence of stress reductions for specimens air-cooled to near room temperature motivated the need to reevaluate the role of temperature on modeling the plastic behavior of metals subjected to electrically-assisted deformation, an item that is often overlooked when invoking electroplasticity theory. As a result, two empirical constitutive models, a modified-Hollomon and the Johnson-Cook models of plastic flow stress, were used to predict the magnitude of stress reductions caused by the application of constant DC current and the associated Joule heating temperature increase during electrically-assisted tension experiments. Results show that the thermal-mechanical coupled models can effectively predict the mechanical behavior of commercially pure titanium in electrically-assisted tension and compression experiments.


1986 ◽  
Vol 72 (2) ◽  
pp. 321-328 ◽  
Author(s):  
Takehide SENUMA ◽  
Hiroshi YADA ◽  
Hirobumi YOSHIMURA ◽  
Hisaaki HARADA ◽  
Takuji SHINDO ◽  
...  

2014 ◽  
Vol 1058 ◽  
pp. 165-169 ◽  
Author(s):  
Shi Ming Hao ◽  
Jing Pei Xie

The hot deformation behaviors of 30%SiCp/2024 aluminum alloy composites was studied by hot compression tests using Gleeble-1500 thermomechanical simulator at temperatures ranging from 350-500°C under strain rates of 0.01-10 s-1. The true stress-true strain curves were obtained in the tests. Constitutive equation and processing map were established. The results show that the flow stress decreases with the increase of deformation temperature at a constant strain rate, and increases with the increase of strain rate at constant temperature, indicating that composite is a positive strain rate sensitive material. The flow stress behavior of composite during hot compression deformation can be represented by a Zener-Hollomon parameter in the hyperbolic sine form. Its activation energy for hot deformation Q is 183.251 kJ/mol. The optimum hot working conditions for this material are suggested.


2019 ◽  
Vol 51 (1) ◽  
pp. 467-481
Author(s):  
Suwaree Chankitmunkong ◽  
Dmitry G. Eskin ◽  
Chaowalit Limmaneevichitr

Abstract Aluminum piston alloys of the AA4032 type are produced by direct-chill (DC) casting and subsequent forging; therefore, it is important to understand their thermomechanical behavior. In recent years, it was shown that additions of Cu and Er could improve mechanical properties of these alloys at room and high temperatures. In this work, we studied the constitutive behavior of AA4032-type alloys with and without Cu and Er additions. The experimental true stress–true strain curves were obtained by compression tests under various temperatures [683 K to 723 K (410 °C to 450 °C)] and strain rates (0.01 to 10 s−1) to determine constitutive parameters [strain-rate sensitivity, activation energy, and Zener–Hollomon (Z) parameter] for the hot deformation behavior of AA4032-type piston alloys with and without additions of Cu and Er. The flow stress decreased with increasing deformation temperature and decreasing strain rate. The results also showed that increasing the Cu content increased the flow stress over the applied range of deformation conditions due to solid-solution strengthening and the formation of primary Si particles, which led to an increase in the activation energy during hot deformation. Moreover, the main microstructural damage in the AA4032 alloy with 3.5 pct Cu was predominantly due to the cracking of primary Si particles. Additions of 0.4 pct Er and 3.5 pct Cu lower the activation energy of deformation, Q, as compared to the base alloy and the alloy with 3.5 pct Cu. The microstructures in the deformed specimens consisted of subgrains, recrystallized grains, and fine eutectic phases. The alloys containing Er demonstrated more polygonized grains at a low strain rate than the alloys without Er, indicating that Er hindered recrystallization development. The peak stress of the AA4032 alloy with 3.5 pct Cu alloy was higher than for the base AA4032 alloy and for the AA4032 alloy with 3.5 pct Cu and 0.4 pct Er additions, which was attributed to the prevalence of the work-hardening mechanism over the softening mechanism.


2013 ◽  
Vol 17 (5) ◽  
pp. 1523-1528
Author(s):  
Bao-Hua Jia ◽  
Wei-Dong Song ◽  
Hui-Ping Tang ◽  
Jian-Guo Ning

Isothermal compression tests of TC18 titanium alloy at the deformation temperatures ranging from 25?C to 800?C and strain rate ranging from 10-4 to 10-2 s-1 were conducted by using a WDW-300 electronic universal testing machine. The hot deformation behavior of TC18 was characterized based on an analysis of the true stress-true strain curves of TC18 titanium alloy. The curves show that the flow stress increases with increasing the strain rate and decreases with increasing the temperature, and the strain rate play an important role in the flow stress when increasing the temperatures. By taking the effect of strain into account, an improved constitutive relationship was proposed based on the Arrhenius equation. By comparison with the experimental results, the model prediction agreed well with the experimental data, which demonstrated the established constitutive relationship was reliable and can be used to predict the hot deformation behavior of TC18 titanium alloy.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1696
Author(s):  
Xiaoyan Feng ◽  
Xue Pang ◽  
Xu He ◽  
Ruihong Li ◽  
Zili Jin ◽  
...  

In this paper, the hot workability of Mg-1Li-1Al (LA11) alloy is assessed through a uniaxial compression test in a temperature range from 200 to 400 °C and a strain rate, έ, of 1–0.01 s−1. The present study reveals that flow stress increases when the strain rate increases and deformation temperature decreases. Based on the hyperbolic sine equation, the flow stress constitutive equation of this alloy under high-temperature deformation is established. The average activation energy was 116.5 kJ/mol. Avrami equation was employed to investigate the dynamic recrystallization (DRX). The DRX mechanism affected by the deformation conditions and Zener–Hollomon parameters is revealed. Finally, the relationship between DRX volume fraction and deformation parameter is verified based on microstructure evolution, which is consistent with the theoretical prediction.


Sign in / Sign up

Export Citation Format

Share Document