Hot Deformation Behavior of 2519 Al Alloy during Isothermal Compression

2007 ◽  
Vol 546-549 ◽  
pp. 749-754 ◽  
Author(s):  
Hui Zhong Li ◽  
Xin Ming Zhang ◽  
Min Gan Chen ◽  
Ying Liu ◽  
Hui Gao

The deformation behavior of 2519 aluminum alloy was studied by isothermal compression by Gleeble-1500 simulator in the temperature range from 300 to 450°C under the strain rates of 0.01~10s-1. The results showed that the flow stress was controlled by strain rate and deformation temperature. The flow stress increased with strain rate and decreased with deformation temperature. The flow stress of 2519 aluminum alloy increased with strain and to the constant values at three strain rates of 0.01 s-1,0.1 s-1and1 s-1, indicating the dynamic recovery to occur. The flow stress decreased after a peak value with increase of strain at strain rate 10s-1 and deformation temperature higher than 350°C, showing partly dynamic recrystallization. The flow stress of 2519 aluminum alloy during high temperature deformation can be represented by Zener-Hollomon parameter.

2019 ◽  
Vol 944 ◽  
pp. 135-141
Author(s):  
Hua Mei Sun ◽  
Yun Lian Qi ◽  
Wei Liu ◽  
Xiao Nan Mao

The deformation behavior in isothermal compression of Ti-5Al-4Mo-2Cr-4Zr-2Sn-1Fe alloy was investigated at the deformation temperature of 800°C, 850°C, 900°C, 950°C and 1000°C, the strain rate of 0.01s-1, 0.1s-1, 1.0s-1and 10.0s-1, and the height reduction of 70%. The flow stress increases rapidly with the increasing of strain at the beginning of deformation. When the strain exceeds a certain value, the flow stress begins to decline and becomes steady. With the increasing of deformation temperature and decreasing of strain rate, the steady stress and peak stress decrease significantly. The effect of strain on the processing maps of Ti-5Al-4Mo-2Cr-4Zr-2Sn-1Fe alloy is obvious. As the strain increases, the instable region moves towards high temperature and high strain rate area. Meanwhile, the contour of efficiency of power dissipation becomes more and more intensive, and the region with high efficiency of power dissipation reduces. Strain rate of 0.01s-1and deformation temperature of 900°C are the optimum processing parameters for Ti-5Al-4Mo-2Cr-4Zr-2Sn-1Fe alloy forging under strain of 0.3.


2014 ◽  
Vol 788 ◽  
pp. 201-207 ◽  
Author(s):  
Hui Zhong Li ◽  
Jun Jiang ◽  
Min Deng ◽  
Xiao Peng Liang ◽  
Jie Ouyang

The deformation behavior and microstructure of 6069 aluminum alloy have been studied by isothermal compression at temperature ranging from 300°C to 450°C on Gleeble-1500 machine at strain rates from 0.01 to 10s-1. The results show that the deformation temperature and strain rate is essential to the flow characteristic, and the main deformation mechanism for 6069 aluminum alloy is dynamic recovery at low strain rates. The dynamic recrystallization take place at the strain rates of 10s-1 and deformation temperature ranges of 300~350°C. At constant strain rate, the flow stress and steady-state flow stress decrease with deformation temperature increasing. While at constant temperature, the flow stress and steady-state flow stress increase with increasing strain rate. The processing map at the strain of 0.7 is obtained and the map exhibits two safe deformation domains (300~350°C at 1~10s-1 and 380~450°C at 0.01~0.3s-1).


2017 ◽  
Vol 36 (7) ◽  
pp. 701-710
Author(s):  
Jun Cai ◽  
Kuaishe Wang ◽  
Xiaolu Zhang ◽  
Wen Wang

AbstractHigh temperature deformation behavior of BFe10-1-2 cupronickel alloy was investigated by means of isothermal compression tests in the temperature range of 1,023~1,273 K and strain rate range of 0.001~10 s–1. Based on orthogonal experiment and variance analysis, the significance of the effects of strain, strain rate and deformation temperature on the flow stress was evaluated. Thereafter, a constitutive equation was developed on the basis of the orthogonal analysis conclusions. Subsequently, standard statistical parameters were introduced to verify the validity of developed constitutive equation. The results indicated that the predicted flow stress values from the constitutive equation could track the experimental data of BFe10-1-2 cupronickel alloy under most deformation conditions.


2016 ◽  
Vol 684 ◽  
pp. 35-41 ◽  
Author(s):  
S.V. Rushchits ◽  
E.V. Aryshensky ◽  
S.M. Sosedkov ◽  
A.M. Akhmed'yanov

The deformation behavior of 1565ch alloy under the plane-strain conditions in the temperature range of 350–490 оС and strain rates range of 0,1–10 s-1 is studied. The expression for steady flow stress as the functions of temperature of deformation and strain rate is obtained. It is established that 1565ch alloy with zirconium addition shows higher strain resistance and less tendency to dynamic and static recrystallization than AMg6.


2018 ◽  
Vol 777 ◽  
pp. 402-407
Author(s):  
Gui Qing Chen ◽  
Gao Sheng Fu ◽  
Xiao Dong Lin ◽  
Jun De Wang ◽  
Chao Zeng Cheng ◽  
...  

3003 aluminum melt was treated with efficient purification, and it was deformed by isothermal compression in the range of deformation temperature 300-500 °C at strain rate 0.0l-10.0 s-1 with Gleeble-1500 thermal simulator. The results show that efficient purification treatment can significantly reduce the impurities, and make inclusion size smaller, uniform distribution. Room temperature mechanical properties were significantly improved. At the same strain rate, the flow stress of 3003 aluminum alloy decreases with the increase of deformation temperature. The flow stress increases with the increase of strain rate under the same deformation temperature. Two kinds of 3003 aluminum alloys with different purification treatments both have dynamic recrystallization characteristics. Especially when the strain rate reaches 10.0 s-1, the rheological curve appears sawtooth fluctuation and the alloy may have discontinuous dynamic recrystallization.


2015 ◽  
Vol 782 ◽  
pp. 61-70
Author(s):  
You Jing Zhang ◽  
Hong Nian Cai ◽  
Xing Wang Cheng ◽  
Shuang Zan Zhao

The high temperature deformation and fracture behavior of ultra-high strength G33 steel under high strain rate compression are investigated by means of a split Hopkinson p ressure bar. Impact tests are performed at strain rates of 1000/s and 2200/s and at temperatures ranging from 25°C to 700°C. The SEM and TEM techniques are also used to analyze the microstructure evolution of the adiabatic shear band (ASB) and fracture characteristics of the deformed specimens at high temperature. The experimental results indicate that the flow stress of G33 steel is significantly dependent on temperatures and strain rates. The flow stress of G33 steel increases with the increase of strain rates, but decreases with the increase of temperatures. The strain rate sensitivity is more pronounced at the low temperature of 25°C. In addition, G33 steel is more liable to fracture at high temperatures than at 25°C. Observations of microstructure show two well-developed symmetric parabolic adiabatic shear bands on the longitudinal cross-section of the cylindrical specimen deformed at the temperature of 700°C and at the strain rate of 2200/s. Within the ASB, the width of the fine equiaxed grain structure is about 7μm. The size of those equiaxed grains is approximately 100nm. The fracture analysis results indicate that the ASBs are the predominant deformation and the specimens fracture along adiabatic shear bands. The fracture surfaces of the deformed G33 steel specimens are characterized by two alternating zones: rough dimple zone and relatively smooth shear zone. Further observations reveal that smooth shear zones consist of severely sheared dimples.


2005 ◽  
Vol 495-497 ◽  
pp. 579-584 ◽  
Author(s):  
Kazuto Okayasu ◽  
Hiroshi Fukutomi

Uniaxial compression tests were conducted on Al-3mass%Mg alloy under various temperatures and strain rates. High temperature yielding was observed at the temperatures higher than 623K. Texture examination elucidated that fiber textures are constructed in all the deformation conditions examined in this study. It was found that the kinds and intensities of texture components varied depending on deformation temperature, strain rate and the amount of strain.


2007 ◽  
Vol 539-543 ◽  
pp. 3401-3406 ◽  
Author(s):  
Talal Al-Samman ◽  
Günter Gottstein

Texture evolution and microstructure development of hot extruded pure magnesium and the magnesium alloy AZ31 deformed by plane strain deformation at select temperatures and strain rates were investigated using X-ray techniques, electron back scattered diffraction (EBSD) and optical microscopy. At a deformation temperature of 200 °C both materials showed a heterogeneous microstructure consisting of highly deformed zones appearing as huge grains or bands and of very small (~ 3 μm) grains. High temperature deformation (400 °C) gave rise to completely different microstructures. Changing of deformation conditions, i.e. the temperature and strain rate resulted in different final textures. At high deformation temperature and low strain rate the formation of a basal texture was suppressed.


2011 ◽  
Vol 239-242 ◽  
pp. 2395-2398 ◽  
Author(s):  
Hui Zhong Li ◽  
Xiao Peng Liang ◽  
Min Song ◽  
Min Zeng

The flow behavior of a 7039 aluminum alloy and the corresponding microstructural evolution during hot deformation were studied by Gleeble-1500 thermal simulation tests, EBSD and TEM observations with temperatures ranging from 300 °C to 500 °C under strain rates from 0.01 s-1 to 10 s-1. It has been shown that the flow stress increases with the decrease in the deformation temperature and increase in the strain rate. The degree of dynamic recrystallization (DRX) increases with the increase in the deformation temperature and strain rate in 7039 aluminum alloy. The complete dynamic recrystallization occurs at 500 °C with a strain rate of 10 s-1.


2016 ◽  
Vol 849 ◽  
pp. 332-339 ◽  
Author(s):  
Jing Li ◽  
Li Wei Zhu ◽  
Xin Nan Wang ◽  
Yue Fei ◽  
Guo Qiang Shang ◽  
...  

Hot compressive experiments of TC4-DT titanium alloy were performed on Gleeble 3500 hot simulator. The influence of hot deformation parameters on high temperature deformation behaviors were investigated, including deformation temperature (938°C~1038°C), deformation degree and strain rate (0.01s-1~10s-1). The results indicated that the peak (σp) and steady-state flow stress (σs) of TC4-DT alloy decreased with the increase of deformation temperature under the same strain rate, especially under a high strain rate. The flow stress increased sharply then decreased and kept invariant finally with the increase of deformation degree. The flow stress increased with the strain rate increasing and exhibited different characteristics in different strain rate range. The optimum conditions obtained based on this investigation of TC4-DT alloy as follows: temperature was 938°C~1008°C, stain rate was 0.01s-1~0.1s-1.


Sign in / Sign up

Export Citation Format

Share Document