3D Numerical Analysis of Centrifuge Tests on Embankments on Soft and Stiff Ground

2013 ◽  
Vol 831 ◽  
pp. 314-320
Author(s):  
Ali Sobhanmanesh ◽  
Ramli Bin Nazir ◽  
Nurly Gofar

The behavior of reinforced and unreinforced embankment on soft and stiff grounds has been investigated using the centrifuge tests and verified using numerical simulations. Four different cases have been investigated in this study based on various types of foundation materials and reinforcement condition. Two-dimensional (2D) and three-dimensional (3D) finite element programs, Plaxis 2D and Plaxis 3D Foundation respectively used to simulate and analyze the prototypes behavior provided by centrifuge tests. Deformation behavior, settlements and effect of reinforcement have been studied in this study. Comparison of the results of the numerical analysis with the measurements obtained from the centrifuge tests shows good agreement in terms of settlement and the reduction of settlement due to geosynthetics reinforcement.

2019 ◽  
Vol 81 (4) ◽  
pp. 488-499
Author(s):  
Wang Cheng ◽  
Yang Tonghui ◽  
Li Wan ◽  
Tao Li ◽  
M.H. Abuziarov ◽  
...  

The spatial problem of internal explosive loading of an elastoplastic cylindrical container filled with water in Eulerian - Lagrangian variables using multigrid algorithms is considered. A defining system of three-dimensional equations of the dynamics of gas, fluid, and elastoplastic medium is presented. For numerical modeling, a modification of S.K. Godunov scheme of the increased accuracy for both detonation products and liquids, and elastoplastic container is used. At the moving contact boundaries “detonation products - liquid”, “liquid - deformable body”, the exact solution of the Riemann's problem is used. A time dependent model is used to describe the propagation of steady-state detonation wave through an explosive from an initiation region. In both cases, the initiation of detonation occurs at the center of the charge. Two problems have been solved: the first task for the aisymmetric position of the charge, the second for the charge shifted relative to the axis of symmetry. In the first task, the processes are two-dimensional axisymmetric in nature, in the second task, the processes are essentially three-dimensional. A comparison is made of the results of calculations of the first problem using a three-dimensional method with a solution using a previously developed two-dimensional axisymmetric method and experimental data. Good agreement is observed between the numerical results for the maximum velocities and circumferential strains obtained by various methods and experimental data. There is good agreement between the numerical results obtained by various methods and the known experimental data. Comparison of the results of solving the first and second problems shows a significant effect of the position of the charge on the wave processes in the liquid, the processes of loading the container and its elastoplastic deformation. The dynamic behavior of a gas bubble with detonation products is analyzed. A significant deviation of the bubble shape from the spherical one, caused by the action of shock waves reflected from the structure, is shown. Comparison of the results of solving the first and second problems showed a significant effect of the charge position on wave processes in a liquid, the processes of loading a container and its elastoplastic deformation. In particular, in the second problem, shock waves of higher amplitude are observed in the liquid when reflected from the walls of the container.


2019 ◽  
Vol 81 (4) ◽  
pp. 489-500
Author(s):  
Cheng Wang ◽  
Tonghui Yang ◽  
Wan Li ◽  
Li Tao ◽  
M.H. Abuziarov ◽  
...  

The spatial problem of internal explosive loading of an elastoplastic cylindrical container filled with water in Eulerian - Lagrangian variables using multigrid algorithms is considered. A defining system of three-dimensional equations of the dynamics of gas, fluid, and elastoplastic medium is presented. For numerical modeling, a modification of S.K. Godunov scheme of the increased accuracy for both detonation products and liquids, and elastoplastic container is used. At the moving contact boundaries “detonation products - liquid”, “liquid - deformable body”, the exact solution of the Riemann's problem is used. A time dependent model is used to describe the propagation of steady-state detonation wave through an explosive from an initiation region. In both cases, the initiation of detonation occurs at the center of the charge. Two problems have been solved: the first task for the aisymmetric position of the charge, the second for the charge shifted relative to the axis of symmetry. In the first task, the processes are two-dimensional axisymmetric in nature, in the second task, the processes are essentially three-dimensional. A comparison is made of the results of calculations of the first problem using a three-dimensional method with a solution using a previously developed two-dimensional axisymmetric method and experimental data. Good agreement is observed between the numerical results for the maximum velocities and circumferential strains obtained by various methods and experimental data. There is good agreement between the numerical results obtained by various methods and the known experimental data. Comparison of the results of solving the first and second problems shows a significant effect of the position of the charge on the wave processes in the liquid, the processes of loading the container and its elastoplastic deformation. The dynamic behavior of a gas bubble with detonation products is analyzed. A significant deviation of the bubble shape from the spherical one, caused by the action of shock waves reflected from the structure, is shown. Comparison of the results of solving the first and second problems showed a significant effect of the charge position on wave processes in a liquid, the processes of loading a container and its elastoplastic deformation. In particular, in the second problem, shock waves of higher amplitude are observed in the liquid when reflected from the walls of the container.


2014 ◽  
Vol 548-549 ◽  
pp. 297-300
Author(s):  
Dae Yong Kim ◽  
Hyeon Il Park ◽  
Ji Hoon Kim ◽  
Sang Woo Kim ◽  
Young Seon Lee

Studies on electromagnetic impact welding between similar or dissimilar flat sheet metals using the flat one turn coil have been recently achieved. In this study, three dimensional electromagnetic-mechanical coupled numerical simulations are performed for the electromagnetic impact welding of aluminum alloy sheets with flat rectangular one turn coil. The deformation behavior during impact welding was examined. The effect of process parameters such as charge voltage, standoff distance and gap distance were investigated.


Author(s):  
R. G. Hantman ◽  
A. A. Mikolajczak ◽  
F. J. Camarata

A description of a two-dimensional supersonic cascade passage analysis and its application to the design of a high hub-to-tip ratio supersonic compressor rotor is presented. The analysis, applicable to the case in which the inviscid flow is everywhere supersonic, includes an entrance region calculation which accounts for blade leading edge bluntness effects, and a passage and wake region calculation. The inviscid part of the analysis is solved using a rotational method of characteristics. The effect of the blade boundary layer displacement thickness is taken into consideration. Comparison of the results of the analysis with supersonic cascade data is made, showing good agreement in overall performance prediction, in blade surface static pressure distributions, and in achievement of the desired shock wave patterns. A comparison of the results of the analysis is made also with the performance of a blade section of a high hub-to-tip ratio supersonic compressor and acceptable agreement obtained.


Author(s):  
Jianmin Xu ◽  
Zhaohong Song

This paper is about blade flutter in a tuned rotor. With the aid of the combination of three dimensional structural finite element method, two dimensional aerodynamical finite difference method and strip theory, the quasi-steady models in which two degrees of freedom for a single wing were considered have been extended to multiple degrees of freedom for the whole blade in a tuned rotor. The eigenvalues solved from the blade motion equation have been used to judge whether the system is stable or not. The calculating procedure has been formed and using it the first stage rotating blades of a compressor where flutter had occurred, have been predicted. The numerical flutter boundaries have good agreement with the experimental ones.


2013 ◽  
Vol 405-408 ◽  
pp. 2399-2408 ◽  
Author(s):  
An Min Fu ◽  
Peng Huang ◽  
Ming Gu

A numerical model of three-dimensional motion of plate-type wind-borne debris in uniform wind field based on quaternions is proposed in this paper. This model can simulate the complex 3D spinning flight robustly and efficiently with rotational quaternions, which are also free from the gimbal lock that is associated with Euler rotational matrix. The predictions from the model were then compared with the results of another quasi-steady model, and good agreement is found. For the unsteady flow involved in autorotational flight mode, the present model was improved by revising the damping moment in order to simulate the two-dimensional motion of plates with higher accuracy. Calibration of the damping moment coefficient was performed through a direct comparison of the predicted non-dimensional angular velocity with the results of CFD-RBD model. The predictions of the improved model agree reasonably well with the CFD-RBD results, which verifies the accuracy of the improved model in predicting the two-dimensional trajectories of plates.


1976 ◽  
Vol 98 (4) ◽  
pp. 592-606 ◽  
Author(s):  
David Japikse

Progress achieved in numerical analysis during the past decade now permits the turbo-machinery designer to carry out a wide variety of inviscid, steady flow, two-dimensional calculations for compressible sybsonic and transonic flow fields, including some strongly diffusing flows. Three-dimensional (including viscosity) calculations are under development and should find wide spread use as analysis tools during the next decade. This review offers an introduction to recent advances in numerical turbomachinery design methods guided by the author’s design usage of several of the techniques reported.


2013 ◽  
Vol 535-536 ◽  
pp. 369-372 ◽  
Author(s):  
Kwang Seok Lee

Line heating-induced deformation behavior of an SS400 thick plate was investigated through both numerical analysis and experimental counterpart by applying induction heating (IH) as a heat source. The drastic increase of temperature gradient upon increasing input power could mainly be predicted by numerical analysis, which attributes to the amount of permanent bending deformation of the thick plate. After plotting the amount of vertical deformation as a function of various positions from top surface of the plate, we found that the higher input power, the more thermomechanical deformation can be generated, regardless of the purposed doubly curved shapes such as concave and saddle-type plates. Also there is good agreement between the numerical analysis and experimental measurement in terms of the transverse curvature.


Sign in / Sign up

Export Citation Format

Share Document