Deformation Behavior of Doubly Curved SS400 Thick Metal Plates by High Frequency Induction-Based Line Heating

2013 ◽  
Vol 535-536 ◽  
pp. 369-372 ◽  
Author(s):  
Kwang Seok Lee

Line heating-induced deformation behavior of an SS400 thick plate was investigated through both numerical analysis and experimental counterpart by applying induction heating (IH) as a heat source. The drastic increase of temperature gradient upon increasing input power could mainly be predicted by numerical analysis, which attributes to the amount of permanent bending deformation of the thick plate. After plotting the amount of vertical deformation as a function of various positions from top surface of the plate, we found that the higher input power, the more thermomechanical deformation can be generated, regardless of the purposed doubly curved shapes such as concave and saddle-type plates. Also there is good agreement between the numerical analysis and experimental measurement in terms of the transverse curvature.

2013 ◽  
Vol 831 ◽  
pp. 314-320
Author(s):  
Ali Sobhanmanesh ◽  
Ramli Bin Nazir ◽  
Nurly Gofar

The behavior of reinforced and unreinforced embankment on soft and stiff grounds has been investigated using the centrifuge tests and verified using numerical simulations. Four different cases have been investigated in this study based on various types of foundation materials and reinforcement condition. Two-dimensional (2D) and three-dimensional (3D) finite element programs, Plaxis 2D and Plaxis 3D Foundation respectively used to simulate and analyze the prototypes behavior provided by centrifuge tests. Deformation behavior, settlements and effect of reinforcement have been studied in this study. Comparison of the results of the numerical analysis with the measurements obtained from the centrifuge tests shows good agreement in terms of settlement and the reduction of settlement due to geosynthetics reinforcement.


1992 ◽  
Vol 20 (4) ◽  
pp. 230-253 ◽  
Author(s):  
T. Akasaka ◽  
K. Kabe ◽  
M. Koishi ◽  
M. Kuwashima

Abstract The deformation behavior of a tire in contact with the roadway is complicated, in particular, under the traction and braking conditions. A tread rubber block in contact with the road undergoes compression and shearing forces. These forces may cause the loss of contact at the edges of the block. Theoretical analysis based on the energy method is presented on the contact deformation of a tread rubber block subjected to compressive and shearing forces. Experimental work and numerical calculation by means of the finite element method are conducted to verify the predicted results. Good agreement is obtained among these analytical, numerical, and experimental results.


2019 ◽  
Vol 22 (2) ◽  
pp. 88-93
Author(s):  
Hamed Khanger Mina ◽  
Waleed K. Al-Ashtrai

This paper studies the effect of contact areas on the transient response of mechanical structures. Precisely, it investigates replacing the ordinary beam of a structure by two beams of half the thickness, which are joined by bolts. The response of these beams is controlled by adjusting the tightening of the connecting bolts and hence changing the magnitude of the induced frictional force between the two beams which affect the beams damping capacity. A cantilever of two beams joined together by bolts has been investigated numerically and experimentally. The numerical analysis was performed using ANSYS-Workbench version 17.2. A good agreement between the numerical and experimental results has been obtained. In general, results showed that the two beams vibrate independently when the bolts were loosed and the structure stiffness is about 20 N/m and the damping ratio is about 0.008. With increasing the bolts tightening, the stiffness and the damping ratio of the structure were also increased till they reach their maximum values when the tightening force equals to 8330 N, where the structure now has stiffness equals to 88 N/m and the damping ratio is about 0.062. Beyond this force value, increasing the bolts tightening has no effect on stiffness of the structure while the damping ratio is decreased until it returned to 0.008 when the bolts tightening becomes immense and the beams behave as one beam of double thickness.


2014 ◽  
Vol 548-549 ◽  
pp. 297-300
Author(s):  
Dae Yong Kim ◽  
Hyeon Il Park ◽  
Ji Hoon Kim ◽  
Sang Woo Kim ◽  
Young Seon Lee

Studies on electromagnetic impact welding between similar or dissimilar flat sheet metals using the flat one turn coil have been recently achieved. In this study, three dimensional electromagnetic-mechanical coupled numerical simulations are performed for the electromagnetic impact welding of aluminum alloy sheets with flat rectangular one turn coil. The deformation behavior during impact welding was examined. The effect of process parameters such as charge voltage, standoff distance and gap distance were investigated.


2004 ◽  
Vol 19 (12) ◽  
pp. 3607-3613 ◽  
Author(s):  
H. Iikawa ◽  
M. Nakao ◽  
K. Izumi

Separation by implemented oxygen (SIMOX)(111) substrates have been formed by oxygen-ion (16O+) implantation into Si(111), showing that a so-called “dose-window” at 16O+-implantation into Si differs from Si(100) to Si(111). In SIMOX(100), an oxygen dose of 4 × 1017/cm2 into Si(100) is widely recognized as the dose-window when the acceleration energy is 180 keV. For the first time, our work shows that an oxygen dose of 5 × 1017/cm2 into Si(111) is the dose-window for the formation of SIMOX(111) substrates when the acceleration energy is 180 keV. The difference between dose-windows is caused by anisotropy of the crystal orientation during growth of the faceted buried SiO2. We also numerically analyzed the data at different oxidation velocities for each facet of the polyhedral SiO2 islands. Numerical analysis results show good agreement with the experimental data.


2006 ◽  
Vol 321-323 ◽  
pp. 451-454
Author(s):  
Joo Young Yoo ◽  
Sung Jin Song ◽  
Chang Hwan Kim ◽  
Hee Jun Jung ◽  
Young Hwan Choi ◽  
...  

In the present study, the synthetic signals from the combo tube are simulated by using commercial electromagnetic numerical analysis software which has been developed based on a volume integral method. A comparison of the simulated signals to the experiments is made for the verification of accuracy, and then evaluation of five deliberated single circumferential indication signals is performed to explore a possibility of using a numerical simulation as a practical calibration tool. The good agreement between the evaluation results for two cases (calibration done by experiments and calibration made by simulation) demonstrates such a high possibility.


Author(s):  
A. Andreini ◽  
C. Bianchini ◽  
A. Ceccherini ◽  
B. Facchini ◽  
L. Mangani ◽  
...  

A numerical analysis of two different effusion cooled plates, with a feasible arrangement for combustor liner application, is presented in this paper. Though having the same porosity and very shallow injection angle (17°), the first configuration presents a “conventional” circular drilling, while the other has “shaped” holes with such an elliptical cross-section that leads to a circular imprint on the cooled surface. Either geometries were the object of an experimental survey in which both adiabatic and overall effectiveness were measured. In order to compensate for the lack of detailed aerodynamic measurements, 3D CFD computations were performed for the two geometries. Steady state RANS calculations were carried out using a k–ε Two Layer turbulence model, both in the standard isotropic and in an algebraically corrected non isotropic version specifically tuned to better predict the lateral spreading of jets in a cross flow. Flow characteristic reproduce typical effusion cooled combustor liner conditions with blowing ratio of 5 and coolant jet Reynolds number of 12500. Even though good agreement could not be obtained comparing thermal adiabatic effectiveness with experiments, the findings of the experiments regarding the rating of the cooling efficiency of the two configurations were confirmed. Additionally, conjugate simulations were performed for the circular hole geometry in order to quantify heat transfer effects and to directly compare them with raw experimental overall effectiveness data.


Sign in / Sign up

Export Citation Format

Share Document