Influence Factors of Landfill Leachate Treatment with CWAO Method

2013 ◽  
Vol 849 ◽  
pp. 127-131
Author(s):  
Qing Yu Wang ◽  
Wei Li Chen ◽  
Jin Bing Lin

Landfill Leachate is a kind of organic wastewater with high concentration and non-biochemical character, and Catalytic Wet Air Oxidation (CWAO) is suitable for this kind of wastewater treatment. In this study, Landfill leachate was treated with Catalytic Wet Air Oxidation (CWAO) method. The monitoring indicators consist of CODCr, absorbance, pH and chroma. The results show that: CODCr removal rate and decolorization rate of landfill leachate reduce with the reduction of the influent pH, the increment of water concentration and the extension of the reaction time; Under the optimized operating conditions: the influent pH of 8.10, the influent CODCr of 16611 mg/L, the reaction time of 90 min, the CODCr removal rate and decolorization rate of landfill leachate reach 56.8% and 83.7%, respectively. The effluent pH is 8.33 and chroma is 1600 times.

2013 ◽  
Vol 467 ◽  
pp. 127-132
Author(s):  
Qing Yu Wan ◽  
Yong Li Zhang ◽  
Jin Bing Lin

The landfill leachate belongs to typical high concentration and organic pollutant wastewater. In this study, Landfill leachate was treated with Catalytic Wet Air Oxidation (CWAO) method. The monitoring indicators consist of CODCr, absorbance, pH and chroma. The results show that the activity of the catalysts arrange from high to low: Co (NO3)2, Cu (NO3)2, Fe (NO3)3, CuSO4, Fe2(SO4)3, Mn (NO3)2, FeSO4, Zn (NO3)2, Bi (NO3)3, Zr (NO3)2, Ni (NO3)2; For the same kind of metal, the catalytic activity of nitrates is higher than that of sulfates; Relative to the distribution of catalyst, the activity of Co (NO3)2 is the strongest. With the optimized catalyst Co (NO3)2 , the landfill leachate has been treated. With the extension of reaction time, the effluent CODCr, absorbance and chroma reduced, but the wastewater biodegradability indicator B/C improved. At the reaction time of 90 min, the CODCr of landfill leachate reduced to 7176 mg/L, and the absorbance and the chroma reduced to 9.1 and 1600 times, respectively. The above results show that the activity of catalyst Co (NO3)2 is high, and the biochemical indicators B/C of wastewater is higher than the critical value of 0.3. Therefore, the treated wastewater shows the good biodegradability, and the chosen catalyst of Co (NO3)2 presents the high activity.


2013 ◽  
Vol 849 ◽  
pp. 137-141 ◽  
Author(s):  
Yong Li Zhang ◽  
Yan Ling Sun

the landfill leachate was disposed by Catalytic Wet Air Oxidation (CWAO) method, and the monitoring indexes include CODCr, decolorization and pH. The results showed that the CODCr removal rate and the decolorization rate of landfill leachate increased with the increase of reaction temperature and reaction pressure. However, they first rose then reduced with the increase of catalyst dosage. Under the condition of the catalyst concentration 300 mg/L of Co (NO3)2, at the reaction pressure of 3.5 MPa and the reaction temperature of 180 °C, the CODCr removal rate and the decolorization rate reached 56.8% and 83.7%, respectively, and pH was 8.45 at the reaction time of 90 min.


1997 ◽  
Vol 35 (4) ◽  
pp. 311-319 ◽  
Author(s):  
L. Lei ◽  
X. Hu ◽  
H. P. Chu ◽  
G. Chen ◽  
P. L. Yue

The treatment of dyeing and printing wastewater from the textile industry by oxidation was studied. The reaction was carried out in a two-litre high pressure reactor. In order to promote the oxidation of organic pollutants present in the wastewater, experiments were conducted using various catalysts including metal salts, metal oxides, and porous alumina supported metals. All catalysts tested were able to enhance the conversion of organic compounds in wastewater, shorten the reaction time, and lower the reaction temperature. The alumina supported catalyst has an advantage over other catalysts in that it can be easily separated from the treated wastewater by filtration and recycled. The conditions in preparing the catalyst supported by porous alumina were experimentally optimised.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Xin Yang ◽  
Junhai Wang ◽  
Qi Zhang ◽  
Xu Wang ◽  
Linlin Xu ◽  
...  

Through a natural tree grain template and sol-gel technology, the heterogeneous catalytic materials based on polyoxometalate compounds H3[PM12O40] encapsulating SiO2: SiO2@H3[PM12O40] (SiO2@PM12, M = W, Mo) with core-shell structure had been prepared. The structure and morphology of the core-shell microspheres were characterized by the XRD, IR spectroscopy, UV-Vis absorbance, and SEM. These microsphere materials can be used as heterogeneous catalysts with high activity and stability for catalytic wet air oxidation of pollutant dyes safranine T (ST) at room condition. The results show that the catalysts have excellent catalytic activity in treatment of wastewater containing 10 mg/L ST, and 94% of color can be removed within 60 min. Under different cycling runs, it is shown that the catalysts are stable under such operating conditions and the leaching tests show negligible leaching effect owing to the lesser dissolution.


2011 ◽  
Vol 233-235 ◽  
pp. 2994-2999 ◽  
Author(s):  
Qing Lin Peng ◽  
Jing Zeng

A kind of compound catalyst containing the main activate component CuO, the second activate component ZrO2 and electronic promoter La2O3 was prepared. It was applicable to treat with high-concentration dimethyl acetylsuccinate (DMAS) production wastewater with catalytic wet air oxidation technology which was used in continuous bubble columns reactor. In this article the influences of concentration of soaked liquid of every component and the second activate component were studied, and the best preparation condition has been determined. The experimental results indicated that the catalyst of CuO-ZrO2-La2O3/ZSM-5 had a higher activity when handling high-concentration DMAS production wastewater. With this catalyst the CODcr removal rate could get 98.7% while non-catalyst only 35.8% at the reaction conditions as follows: reaction temperature 240°C, reaction pressure 3.5MPa, liquor space velocity=2.0 h-1, V (oxygen): V(wastewater)=250:1 and influent wastewater pH=7.


RSC Advances ◽  
2016 ◽  
Vol 6 (77) ◽  
pp. 73810-73816 ◽  
Author(s):  
Fagui Lu ◽  
Chaoying Yu ◽  
Xu Meng ◽  
Jinqi Zhang ◽  
Gexin Chen ◽  
...  

The nature of the Ru precursors affected the performance of Ru catalysts with those prepared from chloride-free Ru precursors being more active than those prepared from chlorine-containing Ru precursors.


2014 ◽  
Vol 809-810 ◽  
pp. 855-859
Author(s):  
Rui Wang ◽  
Jin Chuan Gu ◽  
Chen Li Wang ◽  
Sheng Zhong ◽  
Li Fang Bao

Methods such as processing of ilmenite concentrate by impregnation and roasting, several kinds of CWAO system mineral catalyst is prepared. And to explore under certain conditions of phenol in waste water of phenol removal rate, compare several kinds of preparation methods of catalysts. Studies show that the effort of 723 K calcined after partial acid salt dipping made catalyst is best. Under the condition of 100 r/min at 303K, the 10 mg/L of phenol removal rate can reach more than 98%.


Sign in / Sign up

Export Citation Format

Share Document