3D Finite Element Simulation of Transient Temperature Field for Rapid Electrical Heating Cycle Injection Mold

2009 ◽  
Vol 87-88 ◽  
pp. 177-182
Author(s):  
Xi Ping Li ◽  
Guo Qun Zhao ◽  
Yan Jin Guan

Rapid electrical heating cycle injection molding technology can be used to produce polymer parts with no weld mark, flow mark and other surface defects on the parts surface. Recently, it has been gradually found wide use in plastic injection industry. In this paper, a structure of the rapid electrical heating cycle injection mold and its working processes were presented. As the production efficiency and the part’s quality are seriously affected by the temperature of the mold cavity surface and its distribution uniformity, the heat transfer process of the mold was analyzed by using 3D finite element simulation. The transient temperature values on different places of the cavity surface were obtained. The results provided theoretical guidelines for the engineers to evaluate the layout of the heating rods in the mold.

2019 ◽  
Vol 13 (2) ◽  
pp. 181-188
Author(s):  
Meng Liu ◽  
Guohe Li ◽  
Xueli Zhao ◽  
Xiaole Qi ◽  
Shanshan Zhao

Background: Finite element simulation has become an important method for the mechanism research of metal machining in recent years. Objective: To study the cutting mechanism of hardened 45 steel (45HRC), and improve the processing efficiency and quality. Methods: A 3D oblique finite element model of traditional turning of hardened 45 steel based on ABAQUS was established in this paper. The feasibility of the finite element model was verified by experiment, and the influence of cutting parameters on cutting force was predicted by single factor experiment and orthogonal experiment based on simulation. Finally, the empirical formula of cutting force was fitted by MATLAB. Besides, a lot of patents on 3D finite element simulation for metal machining were studied. Results: The results show that the 3D oblique finite element model can predict three direction cutting force, the 3D chip shape, and other variables of metal machining and the prediction errors of three direction cutting force are 5%, 9.02%, and 8.56%. The results of single factor experiment and orthogonal experiment are in good agreement with similar research, which shows that the model can meet the needs for engineering application. Besides, the empirical formula and the prediction results of cutting force are helpful for the parameters optimization and tool design. Conclusion: A 3D oblique finite element model of traditional turning of hardened 45 steel is established, based on ABAQUS, and the validation is carried out by comparing with experiment.


2017 ◽  
Vol 24 (2) ◽  
pp. 1179-1187 ◽  
Author(s):  
Mohd Amir Zulkefli ◽  
Mohd Ambri Mohamed ◽  
Kim S. Siow ◽  
Burhanuddin Yeop Majlis ◽  
Jothiramalingam Kulothungan ◽  
...  

2004 ◽  
Vol 9 (1-2) ◽  
pp. 17-25 ◽  
Author(s):  
Lafage V. ◽  
Dubousset J. ◽  
Lavaste F. ◽  
Skalli W.

Sign in / Sign up

Export Citation Format

Share Document