Accurate Prediction of Fatigue Life under Random Loading

2014 ◽  
Vol 891-892 ◽  
pp. 1347-1352
Author(s):  
Norio Takeda ◽  
Tomohiro Naruse

This study focuses on the method of predicting the fatigue life of materials subjected to random loading. Since random stress caused by random loading is rigorously expressed in the frequency domain as stress power spectral density (PSD), fatigue life should be predicted using stress PSD. We propose two adjustment methods of improving the accuracy of fatigue life prediction using stress PSD in the frequency domain. The method proposed by Dirlik is widely used for predicting the fatigue life in the frequency domain; however, it overestimates fatigue damage caused by large stress amplitude when the slope of the fatigue resistance curve is large. To prevent this overestimation, we applied our two adjustment methods to fatigue life prediction for typical random stresses observed on mechanical products. As a result, the adjustment methods worked well in improving prediction accuracy. Lightweight and reliable products can be therefore designed by applying the proposed methods to the evaluation of fatigue life under random loading.

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yu Jiang ◽  
Gun Jin Yun ◽  
Li Zhao ◽  
Junyong Tao

Novel accelerated random vibration fatigue test methodology and strategy are proposed, which can generate a design of the experimental test plan significantly reducing the test time and the sample size. Based on theoretical analysis and fatigue damage model, several groups of random vibration fatigue tests were designed and conducted with the aim of investigating effects of both Gaussian and non-Gaussian random excitation on the vibration fatigue. First, stress responses at a weak point of a notched specimen structure were measured under different base random excitations. According to the measured stress responses, the structural fatigue lives corresponding to the different vibrational excitations were predicted by using the WAFO simulation technique. Second, a couple of destructive vibration fatigue tests were carried out to validate the accuracy of the WAFO fatigue life prediction method. After applying the proposed experimental and numerical simulation methods, various factors that affect the vibration fatigue life of structures were systematically studied, including root mean squares of acceleration, power spectral density, power spectral bandwidth, and kurtosis. The feasibility of WAFO for non-Gaussian vibration fatigue life prediction and the use of non-Gaussian vibration excitation for accelerated fatigue testing were experimentally verified.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 180 ◽  
Author(s):  
Jialiang Wang ◽  
Dasheng Wei ◽  
Yanrong Wang ◽  
Xianghua Jiang

In this paper, the viewpoint that maximum resolved shear stress corresponding to the two slip systems in a nickel-based single crystal high-temperature fatigue experiment works together was put forward. A nickel-based single crystal fatigue life prediction model based on modified resolved shear stress amplitude was proposed. For the four groups of fatigue data, eight classical fatigue life prediction models were compared with the model proposed in this paper. Strain parameter is poor in fatigue life prediction as a damage parameter. The life prediction results of the fatigue life prediction model with stress amplitude as the damage parameter, the fatigue life prediction model with maximum resolved shear stress in 30 slip directions as the damage parameter, and the McDiarmid (McD) model, are better. The model proposed in this paper has higher life prediction accuracy.


Author(s):  
Todd Letcher ◽  
John Wertz ◽  
M.-H. Herman Shen

The energy-based lifing method is based on the theory that the cumulative energy in all hysteresis loops of a specimens’ lifetime is equal to the energy in a monotonic tension test. Based on this theory, fatigue life can be calculated by dividing monotonic tensile energy by a hysteresis energy model, which is a function of stress amplitude. Due to variations in the empirically measured hysteresis loops and monotonic fracture area, fatigue life prediction with the energy-based method shows some variation as well. In order to account for these variations, a robust design optimization technique is employed. The robust optimization procedure uses an interval uncertainty technique, eliminating the need to know an exact probability density function for the uncertain parameters. The robust optimization framework ensures that the difference between the predicted lifetime at a given stress amplitude and the corresponding experimental fatigue data point is minimized and within a specified tolerance range while accounting for variations in hysteresis loop energy and fracture diameter measurements. Accounting for these experimental variations will boost confidence in the energy-based fatigue life prediction method despite a limited number of test specimens.


Author(s):  
Leonardo Borgianni ◽  
Paola Forte ◽  
Luigi Marchi

Gears can show significant biaxial stress state at tooth root fillet, due to the way they are loaded and their particular geometry. This biaxial stress state can show a significant variability in principal axes during meshing. Moreover loads may have non predictable components that can be evaluated with the aid of recorded data from complex spectra. In these conditions, commonly adopted approaches for fatigue evaluation may be unsuitable for a reliable fatigue life prediction. This work is aimed at discussing a computer implementation of a fatigue life prediction method suitable for multiaxial stress states and constant amplitude or random loading. For random loading a counting procedure to extract cycles from complex load histories is discussed. This method, proposed by Vidal et al., is based on the r.m.s. value of a damage indicator over all the planes through the point where the fatigue life calculation is made. Miner’s rule is used for the evaluation of the overall damage. The whole fatigue life of the component is evaluated in terms of the numbers of repetitions of the loading block. FEM data are used to evaluate stresses under load. The implementation was validated using test data found in the technical literature. Examples of applications to gears are finally discussed.


2018 ◽  
Vol 7 (3.17) ◽  
pp. 104
Author(s):  
Chin Chuin Hao ◽  
Shahrum Abdullah ◽  
Ahmad Kamal Ariffin ◽  
Salvinder Singh Karam Singh

This paper aims to predict the durability of an automobile coil spring by characterising the captured strain data. The load histories collected at coil spring are often presented in time domain but time domain cannot provide sufficient information for fatigue life prediction. The objective of this study was to characterise the strain signal in time domain, frequency domain and time-frequency domain for fatigue life prediction. The signal obtained in time domain was used to predict the fatigue life of the coil spring through Rainflow cycle counting technique and models of strain-life relationships. In frequency domain, fast Fourier transform revealed that the frequency components in the strain signal ranged between 0-5 Hz. The frequencies can be further categorised into two ranges: 0-0.3 Hz and 1-2 Hz. Power spectral density confirmed that the frequencies with high energy content were 0-5 Hz and the total energy content in the signal is 4.0872x103 µɛ2. Short time Fourier transform can identify the local time and frequency properties of the signal but it has a limitation in time-frequency resolutions. Wavelet transform can provide a better time-frequency resolutions and it confirmed that the transients in the time domain had frequency range of 1-2 Hz. In summary, this study revealed different possible approaches of signal processing in fatigue life assessment of automotive components as guidance for the selection of suitable approach based on the type of information needed for the analysis.  


Sign in / Sign up

Export Citation Format

Share Document