Test Study of Fracture Mechanical Properties of Reactive Powder Concrete with Additives

2014 ◽  
Vol 904 ◽  
pp. 3-6 ◽  
Author(s):  
Zhi Gang Yin

The different influencing regular of fly-ash fractiontype of fibre (steel fibre and polypropylene fibre) and fibre fraction on the mechanical property and fracture behavior of Reactive Powder Concrete (PRC) are studied. Fracture mechanical properties of RPC is researched in double-K fracture model and fracture energy release rate G . Test results show that the crack propagation of RPC with steel fibers is limited. Its fracture toughness and pre-critical crack length is largely enhanced. Double-K fracture model and fracture energy release rate G are consistent with describing the fracture behavior of RPC.

2014 ◽  
Vol 496-500 ◽  
pp. 2402-2406
Author(s):  
Kui He ◽  
Hui Yang ◽  
Fang Fang Jia ◽  
Er Po Wang ◽  
Zhen Bao Lu ◽  
...  

Workability, strength and fracture mechanics of polypropylene macro-fiber reinforced Reactive powder concrete (RPC) were studied in this work. The results showed that the incorporation of macro-fiber could influence the workability of RPC, the slump of RPC decreased with the increasing of macro-fiber content; compressive strength decreased while splitting strength increased with the increasing of macro-fiber, meanwhile the flexural strength invariant. Macro-fiber could strongly enhance the flexural toughness of RPC and changed the failure mode from brittle to ductile; fracture energy tends to increase linearly with the increasing of macro-fiber.


2011 ◽  
Vol 250-253 ◽  
pp. 3802-3806
Author(s):  
Xiao Zhou Liu ◽  
Peng Liu

The fracture energy release rate , which is the important parameter of ice pressure calculation model that is built on energy balance method, is the fracture mechanics performance of ice material. It is related with these factors such as ice material temperature T, which must be measured by experiment. It is the experimental method of fracture mechanics used in this paper. These ice specimens on the different thickness T were tested with fracture mechanics method at low-temperature testing machine, to obtain the fracture flexibility change rate of ice body which contains pre-crack and the values of under different conditions of T, which could determine fracture energy release rate of ice body during the ice pressure generated, which provide the necessary experimental data to establish ice layer pressure calculation model for the application of energy balance method.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 3219-3227
Author(s):  
Zhen-wen Zhang ◽  
Jia-liang Zhang ◽  
Yu-shun Li ◽  
Riu Liu

Parallel strand bamboo (PSB) is a new type of bio-composite. In the present study, three-point bend end-notched flexure (3ENF) tests of PSB were conducted to analyze the fracture behavior including fracture process, resistant curves, and critical energy release rate in the longitudinal (L) system. The results show that transverse-longitudinal (TL) and thickness-longitudinal (ZL) specimens had the same fracture process including the stages of fracture process zone (FPZ) development and opening crack propagation but different mode II critical energy release rate (GIIc), and they indicate that the fiber bridging had a significant influence. The fracture processes suggest the PSB specimens of which the initial crack length was 0.5 times the half span had a stable crack propagating process, and the crack propagation length was wide enough to evaluate GIIc, which was 5.02 N∙mm-1 of TL specimens and 2.71 N∙mm-1 of ZL specimens. Besides, there was no obvious influence of span/depth ratio on the fracture resistance of both ZL and TL specimens when the ratio was larger than 15.


2020 ◽  
Vol 40 (3) ◽  
pp. 65-77
Author(s):  
Victor Rizov

This paper presents investigation of delamination fracture behavior of multilayered non-linear elastic beam configurations by using the Ramberg-Osgood stress-strain relation. It is assumed that each layer exhibits continuous material inhomogeneity along the width as well as along thickness of the layer. An approach for determination of the strain energy release rate is developed for a delamination crack located arbitrary along the multilayered beam height. The approach can be applied for multilayered beams of arbitrary cross-section under combination of axial force and bending moments. The layers may have different thickness and material properties. The number of layers is arbitrary. The approach is applied for analyzing the delamination fracture behavior of a multilayered beam configuration subjected to four-point bending. The beam has a rectangular cross-section. The delamination crack is located symmetrically with respect to the beam midspan. The strain energy release rate is derived assuming that the modulus of elasticity varies continuously in the cross-section of each layer according to a hyperbolic law. In order to verify the solution to the strain energy release rate, the delamination fracture behavior of the multilayered non-linear elastic four-point bending beam configuration is studied also by applying the method of the J-integral. The solution to the strain energy release rate derived in the present paper is used in order to perform a parametric study of delamination.


Author(s):  
Zafrul Khan ◽  
Hasan M. Faisal ◽  
Rafiqul Tarefder

Fracture toughness and fracture energy release rate are two important parameters to understand the crack propagation within any material. Fracture toughness of asphalt concrete (AC) is vital to explain the fatigue cracking and low temperature cracking of asphalt pavement. These two types of distresses are still unsolved issues for asphalt researchers. Measuring fracture toughness of AC is not a new phenomenon. Recently, researchers have used several techniques to measure the fracture toughness of AC. Tests like semi-circular bending (SCB) and disk-shaped compact specimen (DCT) testing have been used to measure the fracture toughness of the AC. From the SCB or DCT tests, past researchers have shown that crack in AC propagates through mainly binder and mastic phase. All these conventional tests are carried out in macro scale. It is important to understand that before propagation of these macro scale cracks, the cracks initiates at the nano/micro scale level. With the increment of the loads these nanoscale cracks become macro scale cracks and propagates through the sample. Therefore, it is important to understand the cracks at nanoscale. In this study, nanoindentation test was introduced to measure the fracture toughness of the asphalt concrete. In a nanoindentation test, the sample surface is indented with a loaded indenter. For this test, Berkovich indenter with load control method was used. A field cored asphalt concrete sample was used for this study. The sample was collected by coring at interstate 40 (I-40) near Albuquerque, New Mexico. The sample was field aged for four years. The maximum load applied in this study was 5-mn and the unloading was done at a faster rate than the loading rate. From the load-displacement curves of the nanoindentation tests, fracture toughness of the samples was measured. The unloading curve of the nanoindentation test was further used to obtain reduced modulus of the asphalt concrete using Oliver-Pharr method. In this study, fracture energy is thought of as a portion of irreversible energy. This irreversible energy is comprised of plastic energy and energy required for propagation of crack. By analyzing the load displacement curve along with the maximum indentation depth, energy release rate and mode I fracture toughness of asphalt concrete was measured.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Abdulmohsen M. Alqahtani ◽  
Thamer K. Albulayhid ◽  
Mutlaq N. Alotaibi ◽  
Ibrahim M. Alarifi ◽  
Tarek M. A. A. EL-Bagory

Abstract The previous research review of piping systems revealed that the plastic pipe companies suffered from many problems in natural gas pipeline systems. One of the most significant problems that appeared in the piping systems are external cracks due to manufacturing processes, welding technique, and installation processes. The principal goal of the present experimental study is to predict the crack growth behavior and energy release rate of cracked ring specimens made from high-density polyethylene (HDPE) under different crack position angles and various crosshead speeds. The effect of loading rate on the external radial crack at different crack position angles plays an important role in the prediction of fracture behavior of plastic pipe materials. For this reason, it is necessary to conduct a study for the fracture analysis of pipe ring specimens under tension loading with double external cracks at constant radial crack length to width ratio equal a/W = 0.5. A precracking machine is designed especially in the present experimental study to simulate the actual radial cracks at outer surface of pipe ring specimens. The effects of crosshead speed and crack position angle revealed a significant effect on the energy release rate and maximum applied load under tensile load.


Author(s):  
Abdulmohsen M. Alqahtani ◽  
Thamer K. Albulayhid ◽  
Mutlaq N. Alotaibi ◽  
Ibrahim M. Alarifi ◽  
Tarek M. A. A. El-Bagory

Abstract The previous research review of piping systems revealed that the plastic pipes companies suffered from many problems in natural gas pipeline systems. One of the most significant problems appeared in the piping systems are external cracks due to manufacturing processes, welding technique and installation processes. The principal goal of the present experimental study is to predict the crack growth behavior and energy release rate of cracked ring specimen made from high-density polyethylene (HDPE) under different crack position angles and various crosshead speeds. The effect of loading rate on the external radial crack at different crack position angles plays an important role in the prediction of fracture behavior of plastic pipe materials. For this reasons, it is necessary to conduct a study for the fracture analysis of pipe ring specimen under tension loading with double external cracks at constant radial crack length to width ratio equal a/W = 0.5. Pre-cracking machine is designed especially in the present experimental study to simulate the actual radial cracks at outer surface of pipe ring specimens. The effects of crosshead speed and crack position angle are revealed a significant effect on the energy release rate and maximum applied load under tensile load.


Sign in / Sign up

Export Citation Format

Share Document