ring specimen
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 1)

Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 749
Author(s):  
Andrej Likeb ◽  
Nenad Gubeljak

To estimate the acceptable size of cracks and predict the loading limit of the pipeline or its resistance to the initiation and crack growth by following the structural integrity, the fracture toughness and limit load solutions are required. Standard fracture toughness testing of thin-walled pipelines is often difficult to perform in order to complete standard requirements. To find an alternative technique for the measurement of the fracture toughness of the already delivered pipeline segment, the new pipe-ring specimen has been proposed; however, the limit load solutions have not been investigated yet. The limit load depends on the geometry of the specimen and loading mode. The ligament yielding of pipe-ring specimens containing axial cracks through the thickness under combined loads was calculated by the finite element method. This paper provides limit load solutions of several different pipe-ring geometries containing two diametric symmetrical cracks with the same depth ratio in a range of 0.45 ≤ a/W ≤ 0.55. The limit load (LL) solutions calculated by numerical analysis are shown as a function of the full ring section’s size and the corresponding crack aspect ratio for determining the normalized load. These can potentially construct the failure assessment diagram to estimate the crack acceptance in a part of the pipe.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 425
Author(s):  
Alexander Bardelcik ◽  
Bharathwaj Thirumalai Ananthapillai

The weld seam characteristics of continuously roll formed and induction seam welded TRIP690 tubes were examined in this work. These tube are subsequently used in automotive hydroforming applications, where the weld seam characteristics are critical. The induction seam welds are created through a solid-state welding process and it was shown that by increasing the induction frequency by 26%, the weld seam width within the heat affected zone (HAZ) reduced due to a plateau in the hardness distribution which was a result of a delay in the transformation of martensite. 2D hardness distribution contours were also created to show that some of the weld conditions examined in this work resulted in a strong asymmetric hardness distribution throughout the weld, which may be undesirable from a performance perspective. An increase in the pressure roll force was also examined and revealed that a wider total weld seam width was produced likely due to an increase in temperature which resulted in more austenitization of the sheet edge prior to welding. The ring hoop tension test (RHTT) was applied to the tube sections created in this work. A Tensile and Notch style ring specimen were tested and revealed excellent performance for these welds due to high peak loads (~17.2 kN) for the Notch specimens (force deformation within weld) and lower peak loads (~15.2 kN) for the Tensile specimens for which fracture occurred in the base metal.


Author(s):  
Abdulmohsen M. Alqahtani ◽  
Thamer K. Albulayhid ◽  
Mutlaq N. Alotaibi ◽  
Ibrahim M. Alarifi ◽  
Tarek M. A. A. El-Bagory

Abstract The previous research review of piping systems revealed that the plastic pipes companies suffered from many problems in natural gas pipeline systems. One of the most significant problems appeared in the piping systems are external cracks due to manufacturing processes, welding technique and installation processes. The principal goal of the present experimental study is to predict the crack growth behavior and energy release rate of cracked ring specimen made from high-density polyethylene (HDPE) under different crack position angles and various crosshead speeds. The effect of loading rate on the external radial crack at different crack position angles plays an important role in the prediction of fracture behavior of plastic pipe materials. For this reasons, it is necessary to conduct a study for the fracture analysis of pipe ring specimen under tension loading with double external cracks at constant radial crack length to width ratio equal a/W = 0.5. Pre-cracking machine is designed especially in the present experimental study to simulate the actual radial cracks at outer surface of pipe ring specimens. The effects of crosshead speed and crack position angle are revealed a significant effect on the energy release rate and maximum applied load under tensile load.


2019 ◽  
Vol 99 ◽  
pp. 131-139 ◽  
Author(s):  
J. Kazakeviciute ◽  
J.P. Rouse ◽  
D.S.A. De Focatiis ◽  
C.J. Hyde

Sign in / Sign up

Export Citation Format

Share Document