Modeling and Analysis of the Ground Experiment for Restricted Three-Body Problem

2014 ◽  
Vol 926-930 ◽  
pp. 3084-3087
Author(s):  
Hao Yang Li ◽  
Zhi Kun She ◽  
Bai Xue ◽  
Wang Jie Qiu ◽  
Zhi Ming Zheng

This paper analyzes the restricted three-body problems in the ground test systems. First, under the ideal condition, after analyzing the forces on the spacecraft in the rotating coordinates, a mathematical model of elliptic restricted three-body motion is founded. Second, for the restricted three-body problem in the ground test system, the forces on the test ball are analyzed and the corresponding elliptic mathematical model apart from the perturbation is founded. Then, based on the two models founded above, the similarity between the ideal spatial model and the ground simulation model is analyzed.

2018 ◽  
Vol 168 ◽  
pp. 04001
Author(s):  
Medeu Abishev ◽  
Saken Toktarbay ◽  
Aigerim Abylayeva ◽  
Amanhan Talkhat

We investigate the orbital stability of a test particle motion in the restricted three-body problem where all bodies have their own rotation. We have shown that it is possible to get some insight into the stability properties of the motion of test particles in restricted three-body problem, without knowing the exact solutions of the relativistic motion equations.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Vivian Martins Gomes ◽  
Jorge Formiga ◽  
Rodolpho Vilhena de Moraes

The present paper has the goal of studying close approaches between a planet and a group of particles. The mathematical model includes the presence of the atmosphere of the planet. This cloud is assumed to be created by the passage of the spacecraft in the atmosphere of the planet, which can cause the explosion of the spacecraft. The system is assumed to be formed by the Sun, the planet, and the spacecraft that explodes and becomes a cloud of particles. The Sun and the planet are assumed to be in circular orbits and the motion is planar. The equations of motion are the ones given by the circular planar restricted three-body problem combined with the forces given by the atmospheric drag. In the numerical simulations, the planet Jupiter is the celestial body used for the close approaches. The initial positions and velocities of the spacecraft and the particles are specified at the periapsis, because it is assumed that this is the point where the explosion occurs.


New Astronomy ◽  
2021 ◽  
Vol 84 ◽  
pp. 101510
Author(s):  
Md Sanam Suraj ◽  
Rajiv Aggarwal ◽  
Md Chand Asique ◽  
Amit Mittal

2007 ◽  
Vol 17 (04) ◽  
pp. 1151-1169 ◽  
Author(s):  
MARIAN GIDEA ◽  
JOSEP J. MASDEMONT

The stable and unstable invariant manifolds associated with Lyapunov orbits about the libration point L1between the primaries in the planar circular restricted three-body problem with equal masses are considered. The behavior of the intersections of these invariant manifolds for values of the energy between that of L1and the other collinear libration points L2, L3is studied using symbolic dynamics. Homoclinic orbits are classified according to the number of turns about the primaries.


Sign in / Sign up

Export Citation Format

Share Document