Study on the Dynamic Behaviors of X70 Pipeline Steel by Numerical Simulation

2010 ◽  
Vol 97-101 ◽  
pp. 278-281 ◽  
Author(s):  
Xiu Li Zhang ◽  
Yi Ming Mi ◽  
Tao Ji ◽  
Hong Xia Xu ◽  
Yan Ting Xie ◽  
...  

Using the commercial code ANSTS/LS-DYNA, this study has established a Split Hopkinson Pressure Bar (SHPB) finite element model (FEM) of X70 pipeline steel. Moreover, the stress-strain behavior of X70 pipeline steel has been investigated by a simplified Johnson-Cook model. The stress and strain relationship of X70 pipeline steel under different compact speeds is obtained under the high strain rate of 103S-1. The results obtained by numerical simulation agree well with those by experiments, and the parameters of Johnson-Cook model describe accurately the mechanical behaviors of X70 pipe line steel under high strain rate. This conclusion will serve as an important reference for developing and applying materials.

2014 ◽  
Vol 566 ◽  
pp. 43-49
Author(s):  
Hyung Seop Shin ◽  
Brian Tuazon ◽  
Kyung Oh Bae ◽  
Sang Hyun Lee ◽  
Hyun Chang Yim ◽  
...  

The responses of three high strength steels under impact loading were examined, specifically on their strain rate dependence. Split Hopkinson pressure bar test was used in this study. Over a wide strain rate range, the Johnson-Cook model and modified Johnson-Cook mode were adopted to determine the strain rate hardening behavior of the materials. The group determined the material parameters for each metallic material tested. Obtained material parameters were used to predict the behavior of each steel at high strain rate region. The modified Johnson-Cook model was not able to represent well enough the plastic deformation behavior of steels, specifically the steel that exhibited strain softening behavior at high strain rate region.


2011 ◽  
Vol 82 ◽  
pp. 154-159 ◽  
Author(s):  
Anatoly M. Bragov ◽  
Ezio Cadoni ◽  
Alexandr Yu. Konstantinov ◽  
Andrey K. Lomunov

In this paper is described the mechanical characterization at high strain rate of the high strength steel usually adopted for strands. The experimental set-up used for high strain rates testing: in tension and compression was the Split Hopkinson Pressure Bar installed in the Laboratory of Dynamic Investigation of Materials in Nizhny Novgorod. The high strain rate data in tension was obtained with dog-bone shaped specimens of 3mm in diameter and 5mm of gauge length. The specimens were screwed between incident and transmitter bars. The specimens used in compression was a cylinder of 3mm in diameter and 5mm in length. The enhancement of the mechanical properties is quite limited compared the usual reinforcing steels.


2018 ◽  
Vol 183 ◽  
pp. 02011
Author(s):  
Kenji Nakai ◽  
Tsubasa Fukushima ◽  
Takashi Yokoyama ◽  
Kazuo Arakawa

The high strain-rate compressive characteristics of a cross-ply carbon/epoxy laminated composite in the three principal material directions or fibre (1-), in-plane transverse (2-) and throughthickness (3-) directions are investigated on the conventional split Hopkinson pressure bar (SHPB) over a range of temperatures between 20 and 80 °C. A nearly 10 mm thick cross-ply carbon/epoxy composite laminate fabricated using vacuum assisted resin transfer molding (VaRTM) was tested. Cylindrical specimens with a slenderness ratio (= length/diameter) of 0.5 are used in high strain-rate tests, and those with the slenderness ratios of 1.0 and 1.5 are used in low and intermediate strain-rate tests. The uniaxial compressive stress-strain curves up to failure at quasi-static and intermediate strain rates are measured on an Instron testing machine at elevated temperatures. A pair of steel rings is attached to both ends of the cylindrical specimens to prevent premature end crushing in the 1-and 2-direction tests on the Instron testing machine. It is shown that the ultimate compressive strength (or failure stress) exhibits positive strainrate effects and negative temperature ones over a strain-rate range of 10–3 to 103/s and a temperature range of 20 to 80 °C in the three principal material directions.


2017 ◽  
Vol 36 (1) ◽  
pp. 531-549 ◽  
Author(s):  
Sunita Mishra ◽  
Hemant Meena ◽  
Vedant Parashar ◽  
Anuradha Khetwal ◽  
Tanusree Chakraborty ◽  
...  

2018 ◽  
Vol 183 ◽  
pp. 02012
Author(s):  
Miloslav Popovič ◽  
Jaroslav Buchar ◽  
Martina Drdlová

The results of dynamic compression and tensile-splitting tests of concrete reinforced by randomly distributed short non – metallic fibres are presented. A Split Hopkinson Pressure Bar combined with a high-speed photographic system, was used to conduct dynamic Brazilian tests. Quasi static test show that the reinforcement of concrete by the non-metallic fibres leads to the improvement of mechanical properties at quasi static loading. This phenomenon was not observed at the high strain rate loading .Some explanation of this result is briefly outlined.


Sign in / Sign up

Export Citation Format

Share Document