A Passivity-Based Approach to the Rotor Resistance Estimation and Sliding Mode Control for Induction Motors

2010 ◽  
Vol 97-101 ◽  
pp. 4517-4522 ◽  
Author(s):  
Jenn Yih Chen ◽  
Bean Yin Lee

Based on the passivity theorem, an approach of the rotor resistance estimation and sliding mode position control for induction motor drives is proposed in this paper. Owing to values of the moment of inertia and the viscous coefficient of induction motors are generally small, the load torque disturbance is a critical term to create the chattering phenomenon. The adaptive laws are taken into account for estimating the rotor resistance and the gain of a load torque. Therefore, the chattering associated with the conventional sliding mode controller can be alleviated. The stability analysis of the estimator and the position control system is carried out by employing the passivity theorem. Finally, experimental results are presented to show the performance and robustness of the estimator and the controller with the variations of the motor mechanical parameters, rotor resistance, and load torque disturbances.

2013 ◽  
Vol 37 (3) ◽  
pp. 559-569
Author(s):  
Jenn-Yih Chen

In the rotor reference frame, the input-output linearization theory was adopted to decouple the rotor position and rotor flux. We then designed two adaptation laws to estimate the rotor resistance and mechanical parameters of the motor. The passive properties of the negative feedback connection from the rotor flux observer to the rotor resistance estimator, and the position controller were analyzed according to the passivity theorem. The overall control system was proved to be globally stable. Finally, experimental results show that the proposed scheme is robust to the variations of the rotor resistance and load torque disturbances. Furthermore, the estimated parameters can converge to the actual values.


2009 ◽  
Vol 626-627 ◽  
pp. 489-494
Author(s):  
Jenn Yih Chen ◽  
Bean Yin Lee

This paper presents the passivity-based rotor resistance and mechanical paramters estimation, and the position control for induction motors. Firstly, the input-output linearization theory is employed to decouple the rotor flux amplitude and the rotor position at the transient state. An open-loop current model flux observer then estimates the rotor flux. Furthermore, we adopted the gradient algorithm to design adaptive laws to estimate the rotor resistance, moment of inertia, viscous coefficient, and load torque. The passive properties of the feedback connection of the rotor flux observer to the rotor resistance estimator, and the position controller are analyzed by the passivity theorem. According to the properties, the overall control system is proved to be globally stable without using Lyapunov-type arguments. Finally, experimental results are provided to show that the proposed method is robust to variations of the mechanical parameters and load torque disturbances. Moreover, good position tracking response and parameters estimating characteristic can be obtained.


Author(s):  
Aymen Omari ◽  
Bousserhane Ismail Khalil ◽  
Abdeldjebar Hazzab ◽  
Bousmaha Bouchiba ◽  
Fayssal ElYamani Benmohamed

PurposeThe major disadvantage of the field-oriented control (FOC) scheme of induction motors is its dependency on motor parameter variations because of the temperature rise. Among the motor parameters, rotor resistance is a parameter that can degrade the robustness of FOC scheme. An inaccurate setting of the rotor resistance in the slip frequency may result in undesirable cross coupling and performance degradation. To overcome this disadvantage, the purpose of this paper is to propose a model reference adaptive system (MRAS) rotor time constant tuning to improve the induction motor drive performance and to compensate the flux orientation error in vector control law.Design/methodology/approachFirst, the dynamic model and the indirect field-oriented control of induction motor are derived. Then, an inverse rotor time constant tuning is proposed based on MRAS theory where a new adaptation signal formulation is used as reference model, and the estimated stator currents obtained from induction motors (IM) state space resolution is used in the adaptive model.FindingsThe effectiveness and robustness of IM speed control with the proposed MRAS inverse rotor time constant estimator is verified through MATrix LABoratory/Simulink model simulation and laboratory experimental results. The simulation and experimental results show good transient drive performances, satisfactory for rotor resistance estimation and robustness with regard to uncertainties and load torque disturbance.Originality/valueThis paper presents an online tuning of the inverse rotor time constant using a new adaptation signal MRAS model. The proposed estimator is proved to guarantee the stability for different operating conditions, especially in very low/zero speed region and heavy load torque. The stability analysis of the proposed estimation procedure is also demonstrated.


Author(s):  
Nasim Ullah ◽  
Irfan Sami ◽  
Wang Shaoping ◽  
Hamid Mukhtar ◽  
Xingjian Wang ◽  
...  

This article proposes a computationally efficient adaptive robust control scheme for a quad-rotor with cable-suspended payloads. Motion of payload introduces unknown disturbances that affect the performance of the quad-rotor controlled with conventional schemes, thus novel adaptive robust controllers with both integer- and fractional-order dynamics are proposed for the trajectory tracking of quad-rotor with cable-suspended payload. The disturbances acting on quad-rotor due to the payload motion are estimated by utilizing adaptive laws derived from integer- and fractional-order Lyapunov functions. The stability of the proposed control systems is guaranteed using integer- and fractional-order Lyapunov theorems. Overall, three variants of the control schemes, namely adaptive fractional-order sliding mode (AFSMC), adaptive sliding mode (ASMC), and classical Sliding mode controllers (SMC)s) are tested using processor in the loop experiments, and based on the two performance indicators, namely robustness and computational resource utilization, the best control scheme is evaluated. From the results presented, it is verified that ASMC scheme exhibits comparable robustness as of SMC and AFSMC, while it utilizes less sources as compared to AFSMC.


Author(s):  
Tao Wang ◽  
Jikun Li ◽  
Yuwen Liu

The control of permanent magnet synchronous motor has become an important research, and many control methods have been developed because of its high efficiency and energy-saving characteristics. This article proposes a new motor control approach based on synergetic approach in control theory (SACT) and sliding-mode control (SMC). Since the load torque of the motor will change, the moment of inertia will increase in the experiment. The load torque is estimated by the sliding-mode observer. The moment of inertia is calculated by the least squares method by adding a forgetting factor. The practical application of synergetic control theory broadens the train of thought to meet the demand of high-performance motor drive further. The simulation and experimental results show that this control scheme in this article can improve the transient response and system robustness of dynamic systems.


Author(s):  
Ali Karami-Mollaee ◽  
Hamed Tirandaz ◽  
Oscar Barambones

Purpose The purpose of this paper is position control scheme for a servo induction motor (SIM) with uncertainty has been designed using a new observer issue and a dynamic sliding mode control (DSMC). Design/methodology/approach In DSMC, the chattering is removed due to the integrator (or a low-pass filter) which is placed before the input control of the plant. However, in DSMC, the augmented system has one dimension bigger than the actual system (if integrator is used) and then, the plant model should be completely known. To solve this problem in SIM, the use of a new adaptive state observer (ASO) is proposed. Findings The advantage of the proposed approach is to maintain the system controlled under the external load torque variations. Then, the load variations do not affect the motor positioning. Moreover, it is demonstrated that the observer error converges to zero based on the Lyapunov stability theory. Originality/value The knowledge of the upper bound for the system uncertainty is not necessary in an adaptive state observer, which is important in practical implementation. Simulation results are presented to demonstrate the performance of the proposed approach.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3091 ◽  
Author(s):  
Pedro Ponce ◽  
J. Antonio Rosales ◽  
Arturo Molina ◽  
Hiram Ponce ◽  
Brian MacCleery

Electric direct-current (DC) drives based on DC motor are extremely important in the manufacturing process, so it must be crucial to increase their performance when they are working on load disturbances or the DC motor’s parameters change. Usually, several load torque suddenly appears when electric drives are operating in a speed closed-loop, so robust controllers are required to keep the speed high-performance. One of the most well-known robust strategies is the sliding mode controller (SMC), which works under discontinue operation. This controller can handle disturbances and variations in the plant’s parameters, so the controller has robust performance. Nevertheless, it has some disadvantages (chattering). Therefore, this paper proposed a fuzzy logic controller (FLC) that includes an artificial organic network for adjusting the command signal of the SMC. The proposed controller gives a smooth signal that decrements the chattering in the SMC. The stability condition that is based on Lyapunov of the DC motor is driven is evaluated; besides, the stability margins are calculated. The proposed controller is designed using co-simulation and a real testbed since co-simulation is an extremely useful tool in academia and industry allows to move from co-simulation to real implementation in short period of time. Moreover, there are several universities and industries that adopt co-simulation as the main step to design prototypes. Thus, engineering students and designers are able to achieve excellent results when they design rapid and functional prototypes. For instance, co-simulation based on Multisim leads to design directly printed circuit boards so engineering students or designers could swiftly get an experimental DC drive. The experimental results using this platform show excellent DC-drive performance when the load torque disturbances are suddenly applied to the system. As a result, the proposed controller based on fuzzy artificial organic and SMC allows for adjusting the command signal that improves the dynamic response in DC drives. The experimental response using the sliding-mode controller with fuzzy artificial organic networks is compared against an auto-tuning, Proportional-Integral-Derivative (PID), which is a conventional controller. The PID controller is the most implemented controller in several industries, so this proposal can contribute to improving manufacturing applications, such as micro-computer numerical control (CNC) machines. Moreover, the proposed robust controller achieves a superior-speed response under the whole tested scenarios. Finally, the presented design methodology based on co-simulation could be used by universities and industry for validating and implementing advanced control systems in DC drives.


Sign in / Sign up

Export Citation Format

Share Document