Ceramic Membranes in Carbon Dioxide Capture: Applications and Potentialities

2010 ◽  
Vol 72 ◽  
pp. 105-118 ◽  
Author(s):  
Enrico Drioli ◽  
Adele Brunetti ◽  
Giuseppe Barbieri

Today, CO2 capture from e.g. flue gas has becoming an emerging opportunity for membrane gas separation. The flue gas coming out from power plants contains about 10-15% CO2, which should be separated before its sequestration. The most used membranes for this application are polymeric but they cannot be used at a high temperature. The flue gas exits at ca. 200°C, depending on the specific locations in the plant and, thus, it is highly desirable to separate it at high temperature. An alternative class to polymeric membranes is represented by the ceramic one which comprises zeolites, carbons, silica, perovskites membranes, that exhibit high fluxes and thermal resistance. However, a great challenge is to fabricate them as thin layers, avoiding formation of cracks that compromise the separation. Today, new solutions are in progress for the production of ceramic membrane able to overcome these limitations. For example, hybrid membranes able to combine the properties of different materials are proposed. Moreover, new works are done on mixed-matrix membranes, comprising of a molecular sieve guest phase dispersed in a polymer host matrix [3] which combines the advantage offered by the two materials. This work proposes an overview on the main applications of ceramic membranes in CO2 capture processes.

2020 ◽  
Author(s):  
Chao Cheng ◽  
Hongming Fu ◽  
Heng Zhang ◽  
Haiping Chen ◽  
Dan Gao

Abstract Ceramic membrane method for moisture recovery from flue gas of thermal power plants is of considerable interest due to its excellent selection performance and corrosion resistance. However, manufacturing costs of commercial ceramic membranes are still relatively expensive, which promotes the development of new methods of preparing low-cost ceramic membranes. In this study, a method for the preparation of porous ceramic membrane supports is proposed. Low-cost fly ash from power plants is the main material of the membrane supports, and talcum is the additive. The fabrication process of the ceramic membrane supports is described in detail. The properties of the supports were fully characterized, including surface morphology, phase composition, pore diameter distribution and porosity. Corrosion resistance and mechanical strength of the supports were measured. The obtained ceramic membrane support displays a pore size of about 5 µm and porosity of 37.8%. Furthermore, the water recovery performance of the supports under different operating conditions was experimentally studied. The experimental results show that, the recovered water flux varies with operating conditions. In the study, the maximum recovered water flux reaches 5.22 kg/(m2·h). The findings provide a guidance for the ceramic membrane supports application of water recovery from flue gas.


Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 207
Author(s):  
Chao Cheng ◽  
Hongming Fu ◽  
Jun Wu ◽  
Heng Zhang ◽  
Haiping Chen

Ceramic membrane method for moisture recovery from flue gas of thermal power plants is of considerable interest due to its excellent selection performance and corrosion resistance. However, manufacturing costs of commercial ceramic membranes are still relatively expensive, which promotes the development of new methods for preparing low-cost ceramic membranes. In this study, a method for the preparation of porous ceramic membrane supports is proposed. Low-cost fly ash from power plants is the main material of the membrane supports, and talcum is the additive. The fabrication process of the ceramic membrane supports is described in detail. The properties of the supports were fully characterized, including surface morphology, phase composition, pore diameter distribution, and porosity. The mechanical strength of the supports was measured. The obtained ceramic membrane supports displays a pore size of about 5 μm and porosity of 37.8%. Furthermore, the water recovery performance of the supports under different operating conditions was experimentally studied. The experimental results show that the recovered water flux varies with operating conditions. In the study, the maximum recovered water flux reaches 5.22 kg/(m2·h). The findings provide a guidance for the ceramic membrane supports application of water recovery from flue gas.


2021 ◽  
Vol 110 ◽  
pp. 103423
Author(s):  
Shijian Lu ◽  
Mengxiang Fang ◽  
Qingfang Li ◽  
Hongfu Chen ◽  
Fu Chen ◽  
...  

Author(s):  
Soumya Jyoti Chatterjee ◽  
Goutam Khankari ◽  
Sujit Karmakar

The comparative performance study is carried out for 500 MW Supercritical (SupC) Oxy-Coal Combustion (OCC) and Air-Coal Combustion (ACC) power plants with membrane-based CO2 capture at the fixed furnace temperature. The proposed configurations are modelled using a computer-based analysis software 'Cycle-Tempo' at different operating conditions, and the detailed thermodynamic study is done by considering Energy, Exergy, and Environmental (3-E) analysis. The result shows that the net energy and exergy efficiencies of ACC power plants with CO2 capture are about 35.07 % and 30.88 %, respectively, which are about 6.44 % and 5.77 % points, respectively higher than that of OCC power plant. Auxiliary power consumption of OCC based power plant is almost 1.97 times more than that of the ACC based plant due to huge energy utilization in the Air Separation Unit (ASU) of OCC plant which leads to performance reduction in OCC plant. However, environmental benefit of OCC based power plant is more than that of ACC based power plant with respect to CO2 emission. OCC plant emits about 0.164 kg/kWh of CO2 which is approximately 16.75 times lower than the CO2 emission in ACC based power plant. It is also analyzed that the performance of the CO2 Capture Unit (CCU) for the OCC based plant is about 3.65 times higher than the ACC based power plant due to higher concentration of CO2 (nearly 80.63%) in the flue gas emitting from OCC plant. The study also reveals that the auxiliary power consumption per kg of CO2 capture of the OCC based plant is about 0.142 kWh/kg, which is approximately 0.06 times lower than the ACC based plant. The higher performance of the OCC based power plant is found at lower value of flue gas recirculation due to the fact that reduction in exergy destruction at the mixing zone of the combustor is higher than the increase in exergy destruction of the heat exchangers at higher furnace exit temperature. But the metallurgical temperature limit of boiler tube materials restricts the use of the higher value of furnace temperature. OCC based power plant with CO2 capture can be preferred over ACC based plant with CO2 capture due to higher environmental benefits towards mitigating CO2, the key greenhouse gas on earth in spite of exhibiting lesser energy and exergy efficiencies.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Haiping Chen ◽  
Xiangsheng Li ◽  
Jiadi Wei ◽  
Yijun Feng ◽  
Dan Gao

In this paper, the manufacturing process of microceramic membrane is summarized. The main material of this membrane is fly ash which can reduce the sintering temperature and save the costs. The coal ash ceramic membrane (CACM) was characterized by XRD, SEM, and mercury intrusion method. The results show that the mullite phase formed by CACM at the sintering temperature of 1250°C has morphology and structural characteristics similar to the commercial microceramic membrane. The membrane surface is uniform and dense, without cracks; the pore diameter is 1–4 μm, and the porosity is 26.6%. Furthermore, the CACM and CMCM were compared at the aspects of water and heat recovery performance using flue gas. The experiment indicated that when the flue gas temperature was 50–85°C, the water recovery performance of these two kinds of membrane was similar. Also, the heat transfer capability of the coal ash ceramic membrane was close to that of the commercial microceramic membrane when the temperature range of flue gas was controlled between 50°C and 70°C. When the temperature of flue gas reaches 80°C, the heat transfer performance of the commercial ceramic membrane is better, and the difference of heat recovery between these two kinds of membranes is 19.3%. In general, the CACM and CMCM have similar mass transfer performance, and the heat transfer efficiency of CACM is lower than that of CMCM, but the costs of CACM is much lower than that of CMCM which has a good research prospect in the future.


2022 ◽  
pp. 134704
Author(s):  
Vanessa F. D. Martins ◽  
Carlos V. Miguel ◽  
Jonathan C. Gonçalves ◽  
Alírio E. Rodrigues ◽  
Luís M. Madeira

Sign in / Sign up

Export Citation Format

Share Document