membrane gas separation
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 31)

H-INDEX

25
(FIVE YEARS 4)

2022 ◽  
pp. 77-111
Author(s):  
Ahmad Fauzi Ismail ◽  
Takeshi Matsuura

Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3579
Author(s):  
Ilsia M. Davletbaeva ◽  
Alexander Yu. Alentiev ◽  
Zulfiya Z. Faizulina ◽  
Ilnaz I. Zaripov ◽  
Roman Yu. Nikiforov ◽  
...  

Organosubstituted silica derivatives were synthesized and investigated as modifiers of block copolymers based on macroinitiator and 2,4-toluene diisocyanate. A peculiarity of the modified block copolymers is the existence in their structure of coplanar rigid polyisocyanate blocks of acetal nature (O-polyisocyanates). Organosubstituted silica derivatives have a non-additive effect on high-temperature relaxation and α-transitions of modified polymers and exhibit the ability to influence the supramolecular structure of block copolymers. The use of the developed modifiers leads to a change in the gas transport properties of block copolymers. The increase of the permeability coefficients is due to the increase of the diffusion coefficients. At the same time, the gas solubility coefficients do not change. An increase in the ideal selectivity for a number of gas pairs is observed. An increase in the selectivity for the CO2/N2 gas pair (from 25 to 39) by 1.5 times demonstrates the promising use of this material for flue gases separation.


2021 ◽  
pp. 119656
Author(s):  
Marina A. Guseva ◽  
Dmitry A. Alentiev ◽  
Danila S. Bakhtin ◽  
Ilya L. Borisov ◽  
Roman S. Borisov ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3616
Author(s):  
Fares Almomani ◽  
Asmaa Othman ◽  
Ajinkya Pal ◽  
Easa I. Al-Musleh ◽  
Iftekhar A. Karimi

Conventional natural gas (NG) liquefaction processes remove N2 near the tail of the plant, which limits production capacity and decreases energy efficiency and profit. Engineering calculations suggest that upfront N2 removal could have substantial economic benefits on large-scale liquefied natural gas (LNG) processes. This article provides an overview of the most promising technologies that can be employed for upfront N2 removal in the LNG process, focusing on the process selection and design considerations of all currently available upfront N2 removal technologies. The literature review revealed that although adsorption has proven to be a huge success in gas separation processes (efficiency ≥ 90%), most of the available adsorbents are CH4-selective at typical NG conditions. It would be more encouraging to find N2-selective adsorbents to apply in upfront N2 removal technology. Membrane gas separation has shown growing performance due to its flexible operation, small footprint, and reduced investment cost and energy consumption. However, the use of such technology as upfront N2 removal requires multi-stage membranes to reduce the nitrogen content and satisfy LNG specifications. The efficiency of such technology should be correlated with the cost of gas re-compression, product quality, and pressure. A hybrid system of adsorption/membrane processes was proposed to eliminate the disadvantages of both technologies and enhance productivity that required further investigation. Upfront N2 removal technology based on sequential high and low-pressure distillation was presented and showed interesting results. The distillation process, operated with at least 17.6% upfront N2 removal, reduced specific power requirements by 5% and increased the plant capacity by 16% in a 530 MMSCFD LNG plant. Lithium-cycle showed promising results as an upfront N2 chemical removal technology. Recent studies showed that this process could reduce the NG N2 content at ambient temperature and 80 bar from 10% to 0.5% N2, achieving the required LNG specifications. Gas hydrate could have the potential as upfront N2 removal technology if the is process modified to guarantee significant removals of low N2 concentration from a mixture of hydrocarbons. Retrofitting the proposed technologies into LNG plants, design alterations, removal limits, and cost analysis are challenges that are open for further exploration in the near future. The present review offers directions for different researchers to explore different alternatives for upfront N2 removal from NG.


2021 ◽  
Vol 86 ◽  
pp. 103740
Author(s):  
Maria S. Sergeeva ◽  
Nikita A. Mokhnachev ◽  
Dmitry N. Shablykin ◽  
Andrey V. Vorotyntsev ◽  
Dmitriy M. Zarubin ◽  
...  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
I Gusti B. N. Makertihartha ◽  
Kevin S. Kencana ◽  
Theodorus R. Dwiputra ◽  
Khoiruddin Khoiruddin ◽  
Graecia Lugito ◽  
...  

AbstractMembranes are considered promising tools for gas sweetening due to their lower footprint (i.e., area and energy requirement, considering elimination of solvent/absorbent and its associated regeneration procedures), and ease of scale-up. Performing membrane gas separation is strongly dependent on membrane materials. With a 0.38-nm pore size, the SAPO-34 membrane surpasses the upper bond limit for CO2/CH4 separation. However, preparing defect-free and high-performance zeolite membranes is quite challenging. This paper reviews gas transport and separation mechanisms in SAPO-34 membranes, and it discusses prospective approaches for obtaining membranes with defect-free selective layers and hence high separation performance. Highlights, as well as the authors’ perspectives on the future development of SAPO-34 membranes in the field of gas separation, are pointed out.


Sign in / Sign up

Export Citation Format

Share Document