Metal-Organic Chemical Vapor Deposition of BiFeO3 Based Multiferroics

2014 ◽  
Vol 90 ◽  
pp. 57-65 ◽  
Author(s):  
Maria Rita Catalano ◽  
Gugliemo Guido Condorelli ◽  
Raffaella Lo Nigro ◽  
Graziella Malandrino

BiFeO3 films undoped and doped with Ba and/or Ti have been fabricated through Metal-Organic Chemical Vapor Deposition (MOCVD) on SrTiO3 (100), SrTiO3:Nb (100) and YSZ (100) substrates. Films have been deposited using a multi-metal source, consisting of the Bi (phenyl)3, Fe (tmhd)3, Ba (hfa)2•tetraglyme and Ti (tmhd)2(O-iPr)2 (phenyl= -C6H5, H-tmhd=2,2,6,6-tetramethyl-3,5-heptandione; O-iPr= iso-propoxide; H-hfa=1,1,1,5,5,5-hexafluoro-2,4-pentanedione; tetraglyme = CH3O(CH2CH2O)4CH3) precursor mixture. The structural and morphological characterization of films has been carried out using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). Chemical compositional studies have been performed by energy dispersive X-ray (EDX) analysis. Structural and morphological characterizations point to the formation of crystalline phases and homogeneous surfaces for both undoped and doped BiFeO3 films. Piezoresponse force microscopy (PFM) and piezoresponce force spectroscopy (PFS) have been applied to study the piezoelectric and ferroelectric properties of the films.

2007 ◽  
Vol 515 (14) ◽  
pp. 5593-5596 ◽  
Author(s):  
R.-V. Wang ◽  
F. Jiang ◽  
D.D. Fong ◽  
G.B. Stephenson ◽  
P.H. Fuoss ◽  
...  

2004 ◽  
Vol 811 ◽  
Author(s):  
Raffaella Lo Nigro ◽  
Roberta G. Toro ◽  
Graziella Malandrino ◽  
Vito Raineri ◽  
Ignazio L. Fragalà

ABSTRACTWe report the results of a recent study on the deposition of praseodymium oxides thin films on silicon substrates by Metal-Organic Chemical Vapor Deposition (MOCVD). A suited Pr(III) β-diketonate precursor has been used as the metal source and the deposition conditions have been carefully selected because of a large variety of possible PrO2−x (x= 0−0.5) phases. Pr2O3 films have been obtained in a hot-wall MOCVD reactor under non oxidising ambient at 750°C deposition temperature. The structural and morphological characteristics of Pr2O3 films have been carried out by X-ray diffraction (XRD) and high resolution transmission electron microscopy (TEM). Chemical compositional studies have been performed by X- ray photoelectron spectroscopic (XPS) analysis and a fully understanding of the MOCVD process has been achieved. Preliminary electrical measurements point to MOCVD as a reliable growth technique to obtain good quality praseodymium oxide based films.


2010 ◽  
Vol 96 (5) ◽  
pp. 051911 ◽  
Author(s):  
M.-I. Richard ◽  
M. J. Highland ◽  
T. T. Fister ◽  
A. Munkholm ◽  
J. Mei ◽  
...  

1990 ◽  
Vol 192 ◽  
Author(s):  
Aain E. Kaloyeros ◽  
James W. Corbett ◽  
Paul J. Tobcano ◽  
Richard B. Rizk

ABSTRACTPreliminary results are presented for a new approach proposed by the present investigators to solve the problem of light-induced degradation in amorphous silicon semiconductors. The approach uses low-temperature metal-organic chemical vapor deposition (LTMOCVD) of tailored organometallic precursors. The precursors employed are non-toxic, non-hazardous and easy to handle. In the present paper, a-Si:H films were grown, using argon with various hydrogen concentrations as carrier gas, in a cold-wall CVD reactor at a reactor pressure of 1-10 torr and substrate temperature in the range 300–450°C. Characterization studies were performed using x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and extended electron-energy-loss fine structure spectroscopy (EXELFS). The results of these studies showed that the films were uniform, continuous, adherent and highly pure--contaminant levels were below the detection limits of XPS. In addition, EXELFS results showed that short-range order (SRO), consisting of the same tetrahedral coordinated units found in crystalline silicon, does exist in all the amorphous samples, regardless of hydrogen concentration. However, the degree of stuctural disorder in the silicon local tetrahedral units decreased as hydrogen was added.


1993 ◽  
Vol 335 ◽  
Author(s):  
Bruce J. Hinds ◽  
Jon L. Schindler ◽  
Bin Han ◽  
Deborah A. Neumayer ◽  
Donald C. Degroot ◽  
...  

AbstractSuperconducting thin films of Tl2Ba2Ca2Cu3O10−x (TL-2223) have been grown on single crystal (110) LaAlO3 using a two-step process. Ba2Ca2Cu3Ox precursor films are deposited via metal-organic chemical vapor deposition (MOCVD) in a horizontal hot walled reactor. The second generation precursors Ba(hfa)2•tet, Ca(hfa)2•tet, and Cu(hfa)2 (hfa = hexafluoroacetylacetonate, tet = tetraglyme) were used as volatile metal sources due to their superior volatility and stability. Tl was introduced into the film via a high temperature post anneal in the presence of a Tl2O3:BaO:CaO:CuO pellet (1:2:2:3 ratio). Low O2 partial pressures were used to reduce the temperature in which the TI-2223 phase forms and to improve the surface morphology associated with a liquid phase intermediate. Films are highly oriented with the c-axis perpendicular to the substrate and a-b axis epitaxy is seen from x-ray φ- scans. The best films have a resistively measured Tc of 115K and a magnetically derived Jc of 6×105 A/cm2 (77K, 0 T). Preliminary surface resistance measurements, using parallel plate techniques, give Rs = 0.35 mΩ at 5K (ω = 10 GHz).


1995 ◽  
Vol 379 ◽  
Author(s):  
R. M. Biefeld ◽  
S. R. Kurtz

ABSTRACTWe have prepared InAsSb/InGaAs strained-layer superlattices (SLS's) and InPSb confinement layers using metal-organic chemical vapor deposition (MOCVD) for use as infrared emitters. X-ray diffraction was used to determine lattice matching as well as composition and structure of the SLS's. Photoluminescence linewidth and intensity were used as a measure of the quality of the structures. Typical FWHM were less than 10 meV. The presence of interface layers were indicated by broadened x-ray diffraction peaks for samples grown under non-optimized conditions. Two types of interfacial layers apparently due to a difference in composition at the interfaces were observed with transmission electron microscopy (TEM). The width of the x-ray peaks can be explained by a variation of the interfacial layer thicknesses. Optimized growth resulted in SLS's with narrow x-ray peaks and high radiative efficiency. Room temperature LEDs operating between 4-5 μm have been prepared.


Sign in / Sign up

Export Citation Format

Share Document