A new Insight into the Electromigration Behavior of Copper Interconnects: The Roles of Grain Boundary and Surface Diffusion

1997 ◽  
Vol 143-147 ◽  
pp. 1673-1678 ◽  
Author(s):  
Evgeny E. Glickman ◽  
M. Nathan
Author(s):  
Farhan Javaid ◽  
Habib Pouriayevali ◽  
Karsten Durst

Abstract To comprehend the mechanical behavior of a polycrystalline material, an in-depth analysis of individual grain boundary (GB) and dislocation interactions is of prime importance. In the past decade, nanoindentation emerged as a powerful tool to study the local mechanical response in the vicinity of the GB. The improved instrumentation and test protocols allow to capture various GB–dislocation interactions during the nanoindentation in the form of strain bursts on the load–displacement curve. Moreover, the interaction of the plastic zone with the GB provides important insight into the dislocation transmission effects of distinct grain boundaries. Of great importance for the analysis and interpretation of the observed effects are microstructural investigations and computational approaches. This review paper focused on recent advances in the dislocation–GB interactions and underlying mechanisms studied via nanoindentation, which includes GB pop-in phenomenon, localized grain movement under ambient conditions, and an analysis of the slip transfer mechanism using theoretical treatments and simulations. Graphical abstract


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hui Zhang ◽  
Tao Xu ◽  
Kaihao Yu ◽  
Wen Wang ◽  
Longbing He ◽  
...  

AbstractAtomic diffusion has been recognized as a particularly powerful tool in the synthesis of heterostructures. However, controlled atomic diffusion is very difficult to achieve in the fabrication of individual nanostructures. Here, an electrically driven in situ solid-solid diffusion reaction inside a TEM is reported for the controlled fabrication of two different hetero-nanostructures in the Ag-Te system. Remarkably, the morphology and structure of the as-formed heterostructures are strongly dependent on the path of atomic diffusion. Our experiments revealed that the surface diffusion of Te atoms to Ag nanowires leads to a core-shell structure, while the bulk diffusion of Ag atoms give rise to a Ag2Te-Te segmented heterostructure. Heat released by Joule heating caused the surface diffusion process to be replaced by bulk diffusion and thereby determined the structure of the final product. Our experimental results provide an insight into solid-state diffusion reactions under an electric field and also propose a new process for the fabrication of complex nanostructures.


2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Daniel Valencia ◽  
Evan Wilson ◽  
Zhengping Jiang ◽  
Gustavo A. Valencia-Zapata ◽  
Kuang-Chung Wang ◽  
...  

2018 ◽  
Vol 155 ◽  
pp. 372-378 ◽  
Author(s):  
Maxime Pellan ◽  
Sabine Lay ◽  
Jean-Michel Missiaen ◽  
Susanne Norgren ◽  
Jenny Angseryd ◽  
...  

2018 ◽  
Vol 281 ◽  
pp. 918-933
Author(s):  
Wen Dong Luo ◽  
Hai Peng Qiu ◽  
Jing Zhe Pan

In the sintering of ceramics, cracks are inevitably encountered after sintering. But very few studies have been presented in the literature for qualifying and quantifying effects of inhomogeneity on sintering kinetics. Therefore, a series of detailed sintering variables such as grain size, surface tension and diffusivity are chosen to study the effects of their inhomogeneity on sintering kinetics through a computational model calculated by computer.Furthermore, there are two main achievements in this computational model that first one is providing a numerical solution for the curvature at triple junction (pore tip) of microscopic particles, and second one is considering the effect of surface diffusion on first-stage sintering where diffusion mechanism is coupled by grain-boundary and surface diffusion.


Sign in / Sign up

Export Citation Format

Share Document