Comparison of Electrochemical and Chemical Corrosion Behavior of MRI 230D Magnesium Alloy with and without Plasma Electrolytic Oxidation Treatment

2015 ◽  
Vol 364 ◽  
pp. 27-34
Author(s):  
Barbara Kazanski ◽  
Alex Lugovskoy ◽  
Ohad Gaon ◽  
Michael Zinigrad

Magnesium is one of the lightest metals and magnesium alloys have quite special properties, interest to which is continuously growing. In particular, their high strength-to-weight ratio makes magnesium alloys attractive for various applications, such as transportation, aerospace industryetc. However, magnesium alloys are still not as popular as aluminum alloys, and a major issue is their corrosion behavior.The present research investigated the influence of the PEO treatment on the corrosion behavior of MRI 230M magnesium alloy. Plasma electrolytic oxidation (PEO) of an MRI 230M alloy was accomplished in a silicate-base electrolyte with KF addition using an AC power source.The corrosion behavior of both treated and untreated samples was evaluated by open circuit potential (OCP) measurements, electrochemical impedance spectroscopy (EIS), linear polarization tests, linear sweep voltammetry (Tafel extrapolation) and chemical methods, such as mass loss and hydrogen evolution, in neutral 3.0 wt% NaCl solution.According to the tests results, PEO process can affect the corrosion resistance of MRI 230M magnesium alloy, though its action is not always unambiguous. An attempt to explain the influence of the PEO treatment on the corrosion behavior of the alloy is presented.

2018 ◽  
Vol 386 ◽  
pp. 321-325
Author(s):  
Igor M. Imshinetsky ◽  
Sergey V. Gnedenkov ◽  
Sergey L. Sinebryukhov ◽  
Dmitry V. Mashtalyar ◽  
Andrew V. Samokhin ◽  
...  

The way of protective coatings formation on MA8 magnesium alloy by plasma electrolytic oxidation (PEO) in the electrolyte containing composite zirconia-silica nanoparticles has been developed. It is shown that the coatings, which contain nanoparticles, have a significant advantage in comparison with the surface layers obtained without their use.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Leon White ◽  
Youngmi Koo ◽  
Yeoheung Yun ◽  
Jagannathan Sankar

Plasma electrolytic oxidation (PEO) has been used in the past as a useful surface treatment technique to improve the anticorrosion properties of Mg alloys by forming protective layer. Coatings were prepared on AZ31 magnesium alloy in phosphate electrolyte with the addition of TiO2nanoparticles using plasma electrolytic oxidation (PEO). This present work focuses on developing a TiO2functional coating to create a novel electrophotocatalyst while observing the surface morphology, structure, composition, and corrosion resistance of the PEO coating. Microstructural characterization of the coating was investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) followed by image analysis and energy dispersive spectroscopy (EDX). The corrosion resistance of the PEO treated samples was evaluated with electrochemical impedance spectroscopy (EIS) and DC polarization tests in 3.5 wt.% NaCl. The XRD pattern shows that the components of the oxide film include Mg from the substrate as well as MgO and Mg2TiO4due to the TiO2nanoparticle addition. The results show that the PEO coating with TiO2nanoparticles did improve the corrosion resistance when compared to the AZ31 substrate alloy.


2015 ◽  
Vol 245 ◽  
pp. 97-102
Author(s):  
Dmitry V. Mashtalyar ◽  
Sergey V. Gnedenkov ◽  
Sergey L. Sinebryukhov ◽  
Igor M. Imshinetsky

Investigation results of the composite coatings obtained on MA8 magnesium alloy by plasma electrolytic oxidation (PEO) and post-treated by electrophoretic deposition of superdispersed polytetrafluoroethylene (SPTFE) are presented. Comprehensive research of electrochemical and mechanical properties of the obtained polymer-containing coatings on the magnesium alloy has been performed. It has been established that composite coatings to decrease the corrosion current density by three orders of magnitude (down to Ic = 2.0×10-10 A/cm2) and the wear by two orders of magnitude (down to 1.2×10-6 mm3/(N·m)), as compared to the basic PEO-coating.


2011 ◽  
Vol 189-193 ◽  
pp. 256-259
Author(s):  
Li Wang ◽  
Li Chen ◽  
Wen Fu

The aim of this work is to discuss the corrosion characteristics of plasma electrolytic oxidation (PEO) films formed on AZ31 magnesium alloys in alkaline silicate solution. The uniform and pitting corrosion resistance of the PEO films was investigated by potentiodynamic polarization tests and potentiodynamic scanning curve tests. The composition, the structure and the element contents of the films after immersed in 3.5 wt.% NaCl solution for different time were investigated by XRD、SEM and EDS. The results indicated that the corrosion occurred on AZ31 magnesium alloy and treated PEO samples during five days immersion, but the corrosion tendency of the PEO treated samples is smaller than that of AZ31 magnesium alloy.


Sign in / Sign up

Export Citation Format

Share Document