Nitrogen-Modified Graphdiyne as a Promising Membrane for Helium Separation: First-Principles and Molecular Dynamics Simulations

2017 ◽  
Vol 381 ◽  
pp. 20-25 ◽  
Author(s):  
Jing Xu ◽  
Jing Li ◽  
Hai Jun Liu ◽  
Lian Ming Zhao

The He separation performance of the N-modified graphdiyne monolayer (N-GDY) was studied by using both the first-principles density functional theory (DFT) and molecular dynamics (MD) simulations. The high cohesive energy of 7.24 eV/atom confirmed the strong stability of N-GDY for a gas separation membrane. Based on the calculations, the N-GDY membrane was found to exhibit extremely high He permeance (4.8 ×10-3 mol/m2·s·Pa at 100 K) and selectivities of He/H2O, He/Ar, He/N2, He/CO, He/CO2, and He/CH4 (102~1012 at 300 K). Therefore, N-GDY should be a good candidate for He separation from natural gas.

2015 ◽  
Vol 3 (42) ◽  
pp. 21351-21356 ◽  
Author(s):  
Lei Zhu ◽  
Qingzhong Xue ◽  
Xiaofang Li ◽  
Tiantian Wu ◽  
Yakang Jin ◽  
...  

Using the first-principles density functional theory (DFT) and molecular dynamics (MD) simulations, we investigate the He separation performance of a porous C2N monolayer synthesized recently.


2018 ◽  
Vol 6 (23) ◽  
pp. 11022-11036 ◽  
Author(s):  
Bohayra Mortazavi ◽  
Masoud Shahrokhi ◽  
Xiaoying Zhuang ◽  
Timon Rabczuk

We conducted density functional theory and classical molecular dynamics simulations to study the mechanical, thermal conductivity and stability, electronic and optical properties of single-layer boron–graphdiyne, a novel synthesized 2D material. Our first-principles results reveal the outstanding prospect of boron–graphdiyne as an anode material with ultrahigh charge capacities for Li, Na and Ca ions storage.


RSC Advances ◽  
2014 ◽  
Vol 4 (98) ◽  
pp. 55599-55603 ◽  
Author(s):  
Oleksandr I. Malyi ◽  
Vadym V. Kulish ◽  
Clas Persson

Using Born–Oppenheimer molecular dynamics simulations and “static” density functional theory calculations, reconstructions of the (001) α-quartz surface are studied in detail.


2009 ◽  
Vol 08 (04) ◽  
pp. 677-690 ◽  
Author(s):  
JIN WEN ◽  
JING MA

Packing structures and orientation of sexithiophene (6T) molecules on Ag (111) surface are investigated by molecular dynamics (MD) simulations and quantum chemical calculations. Both the cluster and the slab models are employed. The density functional theory and molecular mechanism calculations demonstrate a weak physisorption and little site-preference in thiophene/ Ag (111) system. The MD simulations show that in the first layer close to the surface, the nearly coplanar 6T strips lie parallel with long axes deviating from [Formula: see text] direction about 20° – 30° and 75° – 90°. The average adsorption height of the monolayer is about 3.2 Å with most of the sulfur atoms in thienyl rings sitting on the bridge site of Ag (111) surface. The 6T molecules tend to take tilted orientations when they are far away from the surface. The packing structures of 6T layers deposited on the surface resulted from the competition between the molecule–substrate and intermolecular interactions.


Author(s):  
Lijuan Meng ◽  
Jinlian Lu ◽  
Yujie Bai ◽  
Lili Liu ◽  
Tang Jingyi ◽  
...  

Understanding the fundamentals of chemical vapor deposition bilayer graphene growth is crucial for its synthesis. By employing density functional theory calculations and classical molecular dynamics simulations, we have investigated the...


Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1306
Author(s):  
Francesco Ferrante ◽  
Antonio Prestianni ◽  
Marco Bertini ◽  
Dario Duca

Molecular dynamics simulations based on density functional theory were employed to investigate the fate of a hydrogen molecule shot with different kinetic energy toward a hydrogenated palladium cluster anchored on the vacant site of a defective graphene sheet. Hits resulting in H2 adsorption occur until the cluster is fully saturated. The influence of H content over Pd with respect to atomic hydrogen spillover onto graphene was investigated. Calculated energy barriers of ca. 1.6 eV for H-spillover suggest that the investigated Pd/graphene system is a good candidate for hydrogen storage.


Author(s):  
Keivan Esfarjani ◽  
Gang Chen ◽  
Asegun Henry

Based on first-principles density-functional calculations, we have developed and tested a force-field for silicon, which can be used for molecular dynamics simulations and the calculation of its thermal properties. This force field uses the exact Taylor expansion of the total energy about the equilibrium positions up to 4th order. In this sense, it becomes systematically exact for small enough displacements, and can reproduce the thermodynamic properties of Si with high fidelity. Having the harmonic force constants, one can easily calculate the phonon spectrum of this system. The cubic force constants, on the other hand, will allow us to compute phonon lifetimes and scattering rates. Results on equilibrium Green-Kubo molecular dynamics simulations of thermal conductivity as well as an alternative calculation of the latter based on the relaxation-time approximation will be reported. The accuracy and ease of computation of the lattice thermal conductivity using these methods will be compared. This approach paves the way for the construction of accurate bulk interatomic potentials database, from which lattice dynamics and thermal properties can be calculated and used in larger scale simulation methods such as Monte Carlo.


Sign in / Sign up

Export Citation Format

Share Document