C2N: an excellent two-dimensional monolayer membrane for He separation

2015 ◽  
Vol 3 (42) ◽  
pp. 21351-21356 ◽  
Author(s):  
Lei Zhu ◽  
Qingzhong Xue ◽  
Xiaofang Li ◽  
Tiantian Wu ◽  
Yakang Jin ◽  
...  

Using the first-principles density functional theory (DFT) and molecular dynamics (MD) simulations, we investigate the He separation performance of a porous C2N monolayer synthesized recently.

2017 ◽  
Vol 381 ◽  
pp. 20-25 ◽  
Author(s):  
Jing Xu ◽  
Jing Li ◽  
Hai Jun Liu ◽  
Lian Ming Zhao

The He separation performance of the N-modified graphdiyne monolayer (N-GDY) was studied by using both the first-principles density functional theory (DFT) and molecular dynamics (MD) simulations. The high cohesive energy of 7.24 eV/atom confirmed the strong stability of N-GDY for a gas separation membrane. Based on the calculations, the N-GDY membrane was found to exhibit extremely high He permeance (4.8 ×10-3 mol/m2·s·Pa at 100 K) and selectivities of He/H2O, He/Ar, He/N2, He/CO, He/CO2, and He/CH4 (102~1012 at 300 K). Therefore, N-GDY should be a good candidate for He separation from natural gas.


Author(s):  
Amina Bouheddadj ◽  
Tarik Ouahrani ◽  
Gbèdodé Wilfried KANNHOUNON ◽  
Boufatah Reda ◽  
Sumeya Bedrane ◽  
...  

First-principles based on density functional theory (DFT) calculations were performed to investigate the interaction of two-dimensional (2D) HfS2 with SO2, a harmful gas with implications for climate change. In particular,...


2017 ◽  
Vol 31 (03) ◽  
pp. 1750017 ◽  
Author(s):  
Yan-Ni Wen ◽  
Peng-Fei Gao ◽  
Xi Chen ◽  
Ming-Gang Xia ◽  
Yang Zhang ◽  
...  

First-principles study based on density functional theory has been employed to investigate width-dependent structural stability and magnetic properties of monolayer zigzag MoS2 nanoribbons (ZZ-MoS2 NRs). The width N = 4–6 (the numbers of zigzag Mo–S chains along the ribbon length) are considered. The results show that all studied ZZ-MoS2 NRs are less stable than two-dimensional MoS2 monolayer, exhibiting that a broader width ribbon behaves better structural stability and an inversely proportional relationship between the structural stability (or the ribbon with) and boundary S–Mo interaction. Electronic states imply that all ZZ-MoS2 NRs exhibit magnetic properties, regardless of their widths. Total magnetic moment increases with the increasing width N, which is mainly ascribed to the decreasing S–Mo interaction of the two zigzag edges. In order to confirm this reason, a uniaxial tension strain is applied to ZZ-MoS2 NRs. It has been found that, with the increasing tension strain, the bond length of boundary S–Mo increases, at the same time, the magnetic moment increases also. Our results suggest the rational applications of ZZ-MoS2 NRs in nanoelectronics and spintronics.


2017 ◽  
Vol 8 (2) ◽  
pp. 1631-1641 ◽  
Author(s):  
Chun-Teh Chen ◽  
Francisco J. Martin-Martinez ◽  
Gang Seob Jung ◽  
Markus J. Buehler

A set of computational methods that contains a brute-force algorithmic generation of chemical isomers, molecular dynamics (MD) simulations, and density functional theory (DFT) calculations is reported and applied to investigate nearly 3000 probable molecular structures of polydopamine (PDA) and eumelanin.


2017 ◽  
Vol 19 (15) ◽  
pp. 9912-9922 ◽  
Author(s):  
Sohag Biswas ◽  
Bhabani S. Mallik

The fluctuation dynamics of amine stretching frequencies, hydrogen bonds, dangling N–D bonds, and the orientation profile of the amine group of methylamine (MA) were investigated under ambient conditions by means of dispersion-corrected density functional theory-based first principles molecular dynamics (FPMD) simulations.


RSC Advances ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 952-957 ◽  
Author(s):  
Konstantina Iordanidou ◽  
Michel Houssa ◽  
Clas Persson

Using first principles calculations based on density functional theory the impact of hole doping on the magnetic and electronic properties of two dimensional PtS2 is studied.


Sign in / Sign up

Export Citation Format

Share Document