Incorporating Waste Material in Road Construction for Sustainable Development

2018 ◽  
Vol 382 ◽  
pp. 235-240
Author(s):  
Mohamad Shakri Shariff bin Mohmad Shariff ◽  
Muhammad Siddiq Farouq bin Md Noor

Waste materials such as Pulverized Fuel Ash (PFA) is a possible alternative to reduce disposal activities and this study is to investigate suitability of PFA by conducting three laboratory tests namely unconfined compression test (UCT), shear box test (SBT) and plate load test. Both UCT and SBT to determine the optimum configuration of PFA that able to achieve the highest percentage of strength of PFA-cement-sand column, meanwhile plate load test is to study the effectiveness of using PFA-cement-sand column in the aspect of the bearing capacity for soft soil. In this study, it was investigated that by using the right configuration of PFA, cement and sand, it can produce a good product of sand column for the purpose of road construction. The highest shear strength was recorded is 93.51 kPa and the proportion of materials is 12%: 60: 28% (ratio of cement: PFA: sand).

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
A. Hemalatha ◽  
N. Mahendran ◽  
G. Ganesh Prabhu

The experimental investigation on the effects of granular fill and geogrid reinforced granular fill on the behaviour of the static liquefaction potential of the subsoil is reported in this study. A series of plate load test were carried out with different thickness of the granular fill, number of geogrid layers, and size/dimension of the footing. The test results were presented in terms of bearing capacity and subgrade modulus for the settlement ofδ10,δ15, andδ20. The experimental results revealed that the introduction of granular fill significantly increases the bearing capacity and effectively control the settlement behaviour of the footing. The introduction of geogrid in granular fill enhanced the Percentage of Control in Settlement and Bearing Capacity Ratio by a maximum of 328.54% and 203.41%, respectively. The introduction of geogrid in granular fill interrupts the failure zone of the granular fill and enhances the subgrade modulus of the footing by a maximum of 255.55%; in addition subgrade modulus of the footing was increased with an increase in the number of geogrid layers. Based on the test results it is suggested that the footing with large size has beneficial improvement on the reinforced granular fill.


1988 ◽  
Vol 136 ◽  
Author(s):  
A. E. Bland ◽  
C. E. Jones ◽  
J. G. Rose ◽  
J. L. Harness

ABSTRACTOver the last five years, the Kentucky Energy Cabinet (KEC) and the Tennessee Valley Authority (TVA) have developed and demonstrated the production of concrete from atmospheric fluidized bed combustion (AFBC) spent bed (SB) ash, and pulverized fuel ash (PFA). This AFBC concrete contains no cement and relies on the reaction of residual lime in the SB ash to react with the pozzolan PFA to form cementitious products. The SB ash is prehydrated in order to reduce exothermic lime hydration reactions and minimize molar volume expansion. Laboratory tests were conducted to establish the performance characteristics of AFBC concretes relative to conventional concrete. AFBC concretes exhibit slower strength gain characteristics, but long term (60 day), unconfined compressive strengths of 5,000 psi have been documented. This slow strength development is typical of pozzolanic concretes. AFBC concrete is more flexible and less brittle than conventional Portland cement concrete, as evidenced by its much lower modulus of elasticity. Setting times for AFBC concretes are extended, requiring the use of accelerators under certain applications. Field demonstrations of the AFBC concretes in ready mix concrete, masonry units, and road base applications have indicated excellent workability and finishing characteristics and confirm the laboratory performance characteristics.The paper describes the results of the testing program with emphasis on the ash chemistry/conditioning, the performance characteristics and field demonstrations.


Sign in / Sign up

Export Citation Format

Share Document