scholarly journals Prediction of Effects of Geogrid Reinforced Granular Fill on the Behaviour of Static Liquefaction

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
A. Hemalatha ◽  
N. Mahendran ◽  
G. Ganesh Prabhu

The experimental investigation on the effects of granular fill and geogrid reinforced granular fill on the behaviour of the static liquefaction potential of the subsoil is reported in this study. A series of plate load test were carried out with different thickness of the granular fill, number of geogrid layers, and size/dimension of the footing. The test results were presented in terms of bearing capacity and subgrade modulus for the settlement ofδ10,δ15, andδ20. The experimental results revealed that the introduction of granular fill significantly increases the bearing capacity and effectively control the settlement behaviour of the footing. The introduction of geogrid in granular fill enhanced the Percentage of Control in Settlement and Bearing Capacity Ratio by a maximum of 328.54% and 203.41%, respectively. The introduction of geogrid in granular fill interrupts the failure zone of the granular fill and enhances the subgrade modulus of the footing by a maximum of 255.55%; in addition subgrade modulus of the footing was increased with an increase in the number of geogrid layers. Based on the test results it is suggested that the footing with large size has beneficial improvement on the reinforced granular fill.

Author(s):  
Gizem Misir ◽  
Mustafa Laman

This study is concerned with the bearing capacity of circularfootings on a granular fill layer above a soft clay soil. Theresults of an extensive series of laboratory and field tests wereused to define an empirical equation. This is generally doneby estimating the dependent variable (e.g. bearing capacity)based on the independent variables (e.g. granular fill layerthickness, soil and footing parameters and settlement ratio).A logarithmic model has been developed by using regressionanalysis to estimate the bearing capacity of a circular footingresting on granular fill at any settlement ratio, using allpossible regression techniques based on 342 field test data, toselect the significant subset of the predictors. The results indicatethat the logarithmic model serves a simple and reliabletool to predict the bearing capacity of circular footings placedon a granular fill with different thicknesses above a soft claysoil. And also, the validity of the developed formulation wasverified with different plate load test results from literature.


Author(s):  
Qasim Al-Obaidi ◽  
Ali Al-Shamoosi ◽  
Azad Ahmed

This paper discusses the Ultimate Bearing Capacity of a stabilized soil by using the fly ash, stone dust and rubber powder for design of a pavement. This paper will help in utilization of locally available waste materials to reuse in the subbase and subgrade layers of pavement. Rubber powder is a waste byproduct generated from the recycling of tires, and is not so easy for degradable, and hence leads to release of harmful gases when it tends to burn. Stone dust is a locally available waste generated product from quarries. The generation of stone dust is increasing day to day in large quantity. The huge quantity of stone dust storage amount will affect the quality of soil. Fly ash is waste combusted coal ash powder generated from the steamers of coal boilers with the burning of fuel gases together. In the sub grade layer the soil is mixed in different proportions with stone dust for hard foundation. In the sub base layer the soil is stabilized with the combination of rubber powder and fly ash. When the rubber powder and fly ash, mixed with water for compaction generates a bond between the soil particles to settle the air fields. In this paper various percentages of rubber powder, stone dust and fly ash with different samples for pavement is layered, and after that plate load test is conducted upon it.


2018 ◽  
Vol 13 (2) ◽  
pp. 87-93
Author(s):  
Muhammet Vefa Akpinar ◽  
Erhan Burak Pancar ◽  
Eren Şengül ◽  
Hakan Aslan

In this study effectiveness of lime stabilization and geocell reinforcement techniques of roads was investigated for low bearing capacity subgrades. For this purpose, a large-scale plate load test was designed and used. Clayey soil with high moisture content was reinforced with different percentages of hydrated lime (5%, 10%, 15% dry weight of the soil). The deflection and stress results indicated that lime stabilization or geocell reinforcement alone did not significantly increase subgrade reaction coefficient and bearing capacity values. Promising results were obtained on stabilization of weak subgrade when both techniques were used together. It was determined that cellular reinforcement increased the reaction modulus coefficient value and bearing capacity of the subgrade soil by more than 15% compared to the lime stabilization.


2011 ◽  
Vol 230-232 ◽  
pp. 367-371
Author(s):  
Xiao Yong Li ◽  
Kang Xu ◽  
Si Yuan Wang

There are three normal sizes of loading plate as 30 cm, 50 cm, 75 cm in roadbed compaction quality detection. The size effect rule for coefficient of foundation is obtained from the investigation on plate load test results by the experiment in lab. The laboratory test may control well the conditions by building the test section modeling the roadbed. The test section is 15 m by 5m. The diameters of loading plate used is 30cm, 35cm, 40cm, 45cm, 50cm, 55cm, 60cm, 65cm, 70cm and 75cm in the test. The regression equation between coefficients of foundation measured by different size of loading plate has been concluded. It is obtained that the ratio of coefficients of foundation between the plate of 50 cm and 30cm is 1.6 for granule filler, 1.65 for grind filler, and the one between the plate of 70 cm and 30cm is 2.17 for granule filler, 2.3 for grind filler.


1998 ◽  
Vol 35 (5) ◽  
pp. 801-810 ◽  
Author(s):  
Ping-Sien Lin ◽  
Li-Wen Yang ◽  
C Hsein Juang

This paper presents the result of plate-load tests conducted on a gravelly cobble deposit in Taichung Basin, Taiwan. The geologic formation of the gravelly cobble deposit makes it very difficult to obtain large undisturbed samples for laboratory testing. These field tests provide an opportunity to examine the applicability of existing theories on bearing capacity and subgrade reaction in this geologic formation. The modulus of subgrade reaction is of particular importance in the local practice of designing high-rise buildings on mat foundations. The results of the plate-load tests on this soil deposit are analyzed and discussed.Key words: plate-load test, gravelly cobble deposit, modulus of subgrade reaction, bearing capacity.


2016 ◽  
Vol 8 (2) ◽  
pp. 79-84 ◽  
Author(s):  
Mindaugas Mikolainis ◽  
Marijus Ustinovičius ◽  
Danutė Sližytė ◽  
Tatyana Zhilkina

This article summarises dynamic deformation modulus correlation with second reload of static plate load test results for an even thickness soil strata layer. An analysis of execution and result interpretation of both static deformation modulus and dynamic deformation modulus is provided also. Different correlations between the two modulus according to different authors are provided. Since dynamic plate load test is not regulated in Lithuania as a soil compaction contron method, a few dynamic plate load tests and static plate load tests were executed in order to compare compaction results. The additional experiments for dynamic plate load tests in different depths were executed which showed that deformation modulus is dependant on depth of test execution, thus it is worthwile to mention to be cautious on compaction results in trenches.


Sign in / Sign up

Export Citation Format

Share Document