Performance Characteristics of Concrete Produced with Fluidized Bed Combustion Ash Residue

1988 ◽  
Vol 136 ◽  
Author(s):  
A. E. Bland ◽  
C. E. Jones ◽  
J. G. Rose ◽  
J. L. Harness

ABSTRACTOver the last five years, the Kentucky Energy Cabinet (KEC) and the Tennessee Valley Authority (TVA) have developed and demonstrated the production of concrete from atmospheric fluidized bed combustion (AFBC) spent bed (SB) ash, and pulverized fuel ash (PFA). This AFBC concrete contains no cement and relies on the reaction of residual lime in the SB ash to react with the pozzolan PFA to form cementitious products. The SB ash is prehydrated in order to reduce exothermic lime hydration reactions and minimize molar volume expansion. Laboratory tests were conducted to establish the performance characteristics of AFBC concretes relative to conventional concrete. AFBC concretes exhibit slower strength gain characteristics, but long term (60 day), unconfined compressive strengths of 5,000 psi have been documented. This slow strength development is typical of pozzolanic concretes. AFBC concrete is more flexible and less brittle than conventional Portland cement concrete, as evidenced by its much lower modulus of elasticity. Setting times for AFBC concretes are extended, requiring the use of accelerators under certain applications. Field demonstrations of the AFBC concretes in ready mix concrete, masonry units, and road base applications have indicated excellent workability and finishing characteristics and confirm the laboratory performance characteristics.The paper describes the results of the testing program with emphasis on the ash chemistry/conditioning, the performance characteristics and field demonstrations.

Author(s):  
Ivan Y. TANG ◽  
Dickson Y. S. YAN ◽  
Irene M. C. LO ◽  
Tongzhou LIU

This study aimed to maximize the utilization of contaminated marine mud and sediment for beneficial reuse by solidification/stabilization (S/S) treatment with cement and pulverized fuel ash (PFA). For the purposes of waste maximization and enhancing the mechanical property of the S/S mixtures, mixing 75% by mass of either contaminated marine mud or sediment with 20% and 5% of cement and PFA, respectively, was found to be the optimal mix design. Their unconfined compressive strengths reached up to 8.32 MPa and 4.47 MPa, respectively. Apart from the mechanical property, according to the U.S.EPA, the TCLP results show that all regulated heavy metals were immobilized to a safe level and are available for engineering application such as fill material. The results of XRD reveal that the formation of CSH gel in the S/S treated mud and sediment is responsible for the strength development and heavy metal immobilization.


2011 ◽  
Vol 2 (1) ◽  
pp. 7-11
Author(s):  
Gingos G.S. ◽  
Mohamed Sutan N.

Partial replacement of cement by mineral admixtures or pozzolans can possibly improve the durability of mortar which directly related to its water absorption. Pulverized Fuel Ash (PFA) is one of the pozzolans that is locally available. Laboratory studies have been conducted on mortar mixes of 0.3w/c, 0.4w/c and 0.5w/c ratios with 10%, 20% and 30% PFA replacements. Mortar cubes were tested to determine their water absorption rates and compressive strengths as they mature. Amount of PFA replacements in the mortar has significant effects on the strength development and water absorption rate of the mortar. Results shows that 20% PFA mortars of 0.5w/c ratio is the best mix to reduced rate of water absorption and achieved higher compressive strength.


1997 ◽  
Vol 119 (2) ◽  
pp. 96-102 ◽  
Author(s):  
E. J. Anthony ◽  
K. Anderson ◽  
R. Carson ◽  
I. T. Lau

Bench-scale and 160 MWe demonstration tests were conducted for petroleum coke and high volatile bituminous coal blends. The bench-scale apparatus was a 100-mm-dia reactor located at the Canada Centre for Mineral and Energy Technology (CANMET), Energy Research Laboratories. The demonstration tests were conducted on the Tennessee Valley Authority’s (TVA) 160 MWe Shawnee Atmospheric Fluidized Bed Combustion (AFBC) Unit located at Paducah, Kentucky. Five and ten percent nominal volatile petroleum cokes were tested in the bench-scale unit. In addition, for the five-percent petroleum coke blends of 25, 50, and 75-percent petroleum coke, with the balance coal, were also examined at the bench scale. Eight start-up tests have been conducted with 50 percent blend of green delayed petroleum coke at the Shawnee AFBC unit. The bench-scale tests revealed that the volatile content in the petroleum coke was the primary factor affecting start-up. The tests showed that the volatile content from the coke and coal ignited at similar times; the char required longer to ignite. Bench-scale tests showed adequate start-up performance with blends up to 75 percent petroleum coke. Cold start-ups were conducted at the Shawnee AFBC Unit with 7 to 10 percent volatile green delayed petroleum coke. In all the start-ups, the operating temperature of 816°C was reached within 15 min of introducing the petroleum coke blend; this is similar to when high volatile bituminous coal was used. One start-up required a longer time because limestone had to be used to generate the bed. Local hot spots (982°C) were noticed in several start-ups for short periods, but subsided when additional air was supplied. Although more difficult to control, TVA routinely starts the Shawnee AFBC Unit with 50 percent shot petroleum coke and 50 percent high volatile bituminous coal.


1989 ◽  
Vol 178 ◽  
Author(s):  
I. Odler ◽  
K. -H. Zysk

AbstractSeven fluidized bed combustion ashes of different composition were studied as to their hydraulicity and pozzolanicity. Four of them exhibited hydraulic reactivity and hardened when mixed with water. All of them exhibited a positive effect on strength development if used as constituents of blended cements. However, the presence of significant amounts of Fe2+ and free lime in the ash, as well as excessive amounts of SO3 in the produced cement caused unsoundness associated with the decline of flexural strength after longer hydration times.


1987 ◽  
pp. 1-13
Author(s):  
Prof. Madya Dr. Mohd. Warid Hussin

This paper describes an investigation on mix design of concrete incorporation highly percentage of pulverized fuel ash (pfa} as a cement replacement in concrete. Studies are also made on the strength development of OPC/superplasticised pfa concrete designed for a specified workability and 28 days strength equivalent to that of the corresponding OPC concrete capering a very wide range of pfa usage (from 30% to 70%), water: cement ratio and age at test. Mixes designed by partial but direct replacement of 70% of pfa and water, cement ratio of 0.3 and a superplasticizer dosage of 2% by weight of cement + pfa, shows a slightly lower strength compared to OPC at earlier age but the concrete achieves comparable strength to OPC concrete at later ages. Such a concrete also exhibits highly workable properties with no detrimental effects on the quality of the concrete. Keywords: admixtures, compressive strength, flexural strength, fly ash, workability, proportioning, water-cement ratio, superplasticizer


2014 ◽  
Vol 67 (3) ◽  
Author(s):  
Taha Mehmannavaz ◽  
Mohammad Ismail ◽  
Salihuddin Radin Sumadi ◽  
Mostafa Samadi ◽  
Seyed Mahdi Sajjadi

The experimental study evaluated the performance of lightweight aerated concrete incorporating various percentages of palm oil fuel ash (POFA) and pulverized fuel ash (PFA) as partial cement replacement. Performance evaluation of the aerated concrete was investigated with respect to ultimate compressive strength, density and strength development. Twelve mixes are developed and tested at different periods, i.e. 3, 7and 28 days. In this work, two different curing regime namely air curing and water curing were used to monitor the effect of the curing regime. The results show that the mixtures produced by replacing cement with POFA and PFA were comparable to the mix without cement replacement. Furthermore, this investigation observed that the cement-POFA-PFA based lightweight aerated concrete can be produced as lightweight non-load bearing concrete units, because hazard of ashes (POFA & PFA) might be a serious issue for human health. Disposal of ashes contributes the shortage of landfill space in all the worlds, especially in Malaysia.  


Author(s):  
Tânia Ferreira ◽  
Carlos Alberto Catorze Pereira ◽  
Carlos Pinho ◽  
JOÃO LUÍS MONNEY DE SÁ PAIVA ◽  
Edmundo Manuel Tavares Marques

Sign in / Sign up

Export Citation Format

Share Document