Influence of Catteneo-Christov Heat Flux Model on Mixed Convection Flow of Third Grade Nanofluid over an Inclined Stretched Riga Plate

2018 ◽  
Vol 387 ◽  
pp. 121-134 ◽  
Author(s):  
Manoj Kumar Nayak ◽  
A.K. Abdul Hakeem ◽  
Oluwole Daniel Makinde

Nature of the very idea of Cattaneo-Christov heat flux model and its influence on the mixed convection flow of third grade nanofluid subject to inclined stretched Riga plate has been studied. The study furthers the case for introducing temperature dependent viscosity modeled by Reynolds. A numerical solution of the transformed boundary layer equations has been accomplished by fourth order R-K and shooting methods. The study itself has pointed out that buoyancies (thermal as well as solutal) and viscosity parameters augment the fluid velocity while increase in Deborah number yields unperturbed diminishing trend of non-linear temperature profiles.

2010 ◽  
Vol 6 (2) ◽  
pp. 84-93 ◽  
Author(s):  
N Ananda Reddy ◽  
SVK Varma ◽  
MC Raju

Thermo diffusion and chemical effects on heat transfer in MHD mixed convection flow and masstransfer past an infinite vertical plate with Ohmic heating and viscous dissipation have beenstudied. Approximate solutions have been derived for velocity, temperature, concentration profiles,skin friction, rate of heat transfer and rate of mass transfer using perturbation technique. Theobtained results are discussed with the help of graphs to observe the effect of various parameterslike Schmidt number (Sc), Prandtl number (Pr), Magnetic parameter (M),Soret number (So) andchemical parameter (K), taking two cases viz. Case I: when Gr > 0 (flow on cooled plate) and CaseII: Gr < 0 (flow on heated plate). Thermal diffusion causes both the fluid velocity and temperature tofall due to the presence of the chemical effect. Velocity and temperature profiles are higher formercury than electrolytic solution. Soret effect increased the concentration of the fluid while chemicaleffect decreased.Keywords: Chemical effect; thermo diffusion; magnetic field; heat-mass transfer.DOI: 10.3329/jname.v6i2.3761


2017 ◽  
Vol 41 (12) ◽  
pp. 4352-4359 ◽  
Author(s):  
T. Hayat ◽  
M. Ijaz Khan ◽  
S. A. Shehzad ◽  
M. Imran Khan ◽  
A. Alsaedi

Sign in / Sign up

Export Citation Format

Share Document