Flexible Poly(imide) Siloxane Block Copolymers to Use at Biomedical Products

2020 ◽  
Vol 400 ◽  
pp. 152-156
Author(s):  
Türkan Doğan ◽  
Nesrin Koken ◽  
Osman Bulut ◽  
Nilgun Baydogan

The novel research on organic polymer chemistry and physical organic chemistry involve poly(imide) siloxane on advanced and emerging technologies in radiation therapy. The poly(imide siloxane) block copolymers were synthesized at different production conditions for the use of biodegradable and biocompatible materials to use at biomedical products. These block copolymers were produced by using 4,4'-oxydianiline (ODA) and 3,3,4,4-Benzophenone-tetracarboxylic dianhydride (BTDA) to form polyimide hard block. APPS and BTDA formed the polysiloxane soft block. The polysiloxane soft blocks were increased by increasing the polyimide hard blocks. Copolymers are synthesized by adjusting the soft and hard segments. Copolymers can be obtained by holding constant hard block segments and by adjusting soft block segments. Hence, flexible poly(imide siloxane) block copolymers were derived. The samples were derived in a flexible rubber form. The prepared copolymers possess the properties of elastomers. Due to these properties, these materials have potential usage in microelectronics devices and medical devices. Poly(imide) siloxane, which can be produced with the desired form and conformed at different configurations, is important in such areas. In this research, the studies on poly(imide) siloxane have supported innovative and comprehensive radiation technology in polymer industries, experimental approaches for the innovative biomedical products. The samples were characterized as flexible rubber form and this property was detected and the creep test of poly (imide) siloxane was performed by Dynamic Mechanical Analyser (DMA).

Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1772 ◽  
Author(s):  
Maria de los Angeles Cortes ◽  
Raquel de la Campa ◽  
Maria Luisa Valenzuela ◽  
Carlos Díaz ◽  
Gabino A. Carriedo ◽  
...  

During the last number of years a variety of crystallization-driven self-assembly (CDSA) processes based on semicrystalline block copolymers have been developed to prepare a number of different nanomorphologies in solution (micelles). We herein present a convenient synthetic methodology combining: (i) The anionic polymerization of 2-vinylpyridine initiated by organolithium functionalized phosphane initiators; (ii) the cationic polymerization of iminophosphoranes initiated by –PR2Cl2; and (iii) a macromolecular nucleophilic substitution step, to prepare the novel block copolymers poly(bistrifluoroethoxy phosphazene)-b-poly(2-vinylpyridine) (PTFEP-b-P2VP), having semicrystalline PTFEP core forming blocks. The self-assembly of these materials in mixtures of THF (tetrahydrofuran) and 2-propanol (selective solvent to P2VP), lead to a variety of cylindrical micelles of different lengths depending on the amount of 2-propanol added. We demonstrated that the crystallization of the PTFEP at the core of the micelles is the main factor controlling the self-assembly processes. The presence of pyridinyl moieties at the corona of the micelles was exploited to stabilize gold nanoparticles (AuNPs).


2012 ◽  
Vol 512-515 ◽  
pp. 2127-2130
Author(s):  
Li Huo ◽  
Cai Xia Dong

The mechanical properties were investigated of a series of PA-PEG thermalplastic elastomer based on PA1010 and polytetramethylene glycol (PEG) with varying hard and soft segment content. Dynamic mechanical measurements of these polymers have carried out over a wide range of temperatures. The block copolymers exhibit three peaks, designated as α, β and γ in the tanδ-temperature curve. The α transition shifts to higher temperature with increasing hard block molecular weight. However, at a constant hard molecular weight, the α transition shifts to higher temperature and the damping increases on increasing the soft segment molecular weight. DMA results show that the block copolymers exhibit a microphase separation structure and both soft and hard segments were found to be crystallizable. The degree of phase separation increases with increasing hard block molecular weight.


2000 ◽  
Vol 77 (3) ◽  
pp. 384 ◽  
Author(s):  
Carlos Bravo-Díaz ◽  
Ugo Costas-Costas ◽  
Román Pazo-LLorente ◽  
Elisa González-Romero

Sign in / Sign up

Export Citation Format

Share Document