Plasticity-Induced Martensitic Phase Transformation in Fatigue of Unnotched SUS304 Plates

2005 ◽  
Vol 297-300 ◽  
pp. 1152-1157
Author(s):  
Yoshifumi Iwasaki ◽  
Yuji Nakasone

The present study has investigated plasticity-induced martensitic phase transformation in fatigue of unnotched SUS304 plates. Martensitic phase transformation occurred in uunotched SUS304 plate specimens fatigued at room temperature in air. Volume fraction Va’ of a’ martensite in the uunotched portion of fatigued specimens was measured by ferrite scope. The relations between the maximum value of Va’, Va’max, and the number of load cycles N were represented by reverse sigmoidal curves for all the applied stress range Ds levels tested in this study. For the most portion of fatigue life, the value of Va’max remained almost constant. This value was increased with increase in the value of Ds. The spatial distribution of Va’ in the specimens varied with N: i.e., continued cycling of stress made a’ transformation localized near the central portion of specimens where the Va’ value reached as high as 35-40%. This value is more than doubled compared to the highest Va’ value found in the tensile tests of SUS304 at room temperature in air. Invisible cracks of 200µm in length were found in the high Va’ value region. These results imply that the measurement of Va’ in fatigued SUS304 components may detect crack initiation sites and may predict residual fatigue life.

1994 ◽  
Vol 9 (2) ◽  
pp. 357-361 ◽  
Author(s):  
B.X. Liu ◽  
Z.J. Zhang

A reverse martensitic phase transformation was observed in Nb-enriched Nb-Co multilayers induced by room temperature 200 ke V xenon ion mixing. Further experiments revealed that this bcc-fcc transition proceeds in two steps, i.e., bcc-hcp and hcp-fcc. A crystallographic model is proposed to explain the two-step transition through shearing and sliding, which are mediated by irradiation-induced defects and strain in the films. In addition, the existence of the hcp and fcc metastable states in the Nb-Co system was confirmed by high-temperature solid state interdiffusion of the corresponding multilayers.


2010 ◽  
Vol 654-656 ◽  
pp. 819-822
Author(s):  
Genki Kikuchi ◽  
Hiroshi Izui ◽  
Yuya Takahashi ◽  
Shota Fujino

In this study, we focused on the sintering performance of Ti-4.5Al-3V-2Mo-2Fe (SP-700) and mechanical properties of SP-700 reinforced with titanium boride (TiB/SP-700) fabricated by spark plasma sintering (SPS). TiB whiskers formed in titanium by a solid-state reaction of titanium and TiB2 particles were analyzed with scanning electron microscopy and X-ray diffraction. The TiB/SP-700 was sintered at temperatures of 1073, 1173, and 1273 K and a pressure of 70 MPa for 10, 30, and 50 min. The volume fraction of TiB ranged from 1.7 vol.% to 19.9 vol.%. Tensile tests of TiB/SP-700 were conducted at room temperature, and the effect of TiB volume fraction on the tensile properties was investigated.


2019 ◽  
Vol 5 (1) ◽  
pp. 106-112 ◽  
Author(s):  
Peer Decker ◽  
Jill Fortmann ◽  
Steffen Salomon ◽  
Philipp Krooß ◽  
Thomas Niendorf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document