Electrostatically Driven Soft Polymer Actuator Based on Dielectric Elastomer

2005 ◽  
Vol 297-300 ◽  
pp. 622-627 ◽  
Author(s):  
Hyouk Ryeol Choi ◽  
Kwang Mok Jung ◽  
Ja Choon Koo ◽  
Jae Do Nam ◽  
Young Kwan Lee ◽  
...  

ElectroActive Polymers (EAPs) are emerging as new actuating means replacing the existing technologies such as piezoelectric, electrostatic, SMA etc. The dielectric elastomer actuator is regarded as the one of the most practically applicable actuators in the near future among the EAPs. In this paper, we introduce a new material capable of being employed as the dielectric elastomer actuator. The proposed material, which is a kind of the synthetic rubber, produces larger deformation as well as higher enegy efficiency, since it has a much higher dielectric constant compared to the previous ones. Beginning with the method of material synthesis, we give the description of its basic material properties by comparing with those of the existing materials for the dielectric elastomers. Also, the advantages of the proposed material as the actuating means are discussed with the several results of the experiments.

2006 ◽  
Vol 306-308 ◽  
pp. 1193-1198 ◽  
Author(s):  
Hyouk Ryeol Choi ◽  
Kwang Mok Jung ◽  
Min Young Jung ◽  
Ja Choon Koo ◽  
Jae Do Nam ◽  
...  

As ElectroActive Polymers (EAPs) attract keen attentions from various engineering fields, they have been proven more beneficial over the traditional electromagnetic transducers. In the present paper, a new polymeric material that could be adopted for a dielectric elastomer actuator is introduced. The proposed synthetic rubber produces larger deformation at higher energy efficiency compared to previously known dielectric elastomers. A method for the material synthesis and a set of comparative testing of the material to the existing material are to be mentioned in the present work. In addition, benefits of actuators made with the proposed material are discussed.


2014 ◽  
Vol 633-634 ◽  
pp. 250-256
Author(s):  
Yin Long Zhu ◽  
Hong Pin Zhou ◽  
Hua Ming Wang

Dielectric elastomer actuators (DEAs) represent one class of electroactive polymers that have already demonstrated excellent performances and show potential applications in many fields. In this paper, we present a simplified conically-shaped dielectric elastomer actuator model to explore the effects of various preloads and actuation voltages on both the actuation displacement and force output of DEA. The strain energy potential of Yeoh is used and the viscoelasticity is also taken into account. Using the developed model, the numerical results of DEA including the actuation displacement, the distribution of the principal stretch ratios and principal stresses in the membrane and the force output can be obtained. With different preloads and actuation voltages, the actuation characteristic of conically-shaped dielectric elastomer actuator is explored experimentally and validates the results determined from the proposed model. The proposed model can be used for the design and optimization of conically-shaped dielectric elastomer actuator.


Author(s):  
Hyouk Ryeol Choi ◽  
Kwang Mok Jung ◽  
Ja Choon Koo ◽  
Jae Do Nam ◽  
Young Kwan Lee ◽  
...  

1983 ◽  
Vol 4 ◽  
pp. 297-297
Author(s):  
G. Brugnot

We consider the paper by Brugnot and Pochat (1981), which describes a one-dimensional model applied to a snow avalanche. The main advance made here is the introduction of the second dimension in the runout zone. Indeed, in the channelled course, we still use the one-dimensional model, but, when the avalanche spreads before stopping, we apply a (x, y) grid on the ground and six equations have to be solved: (1) for the avalanche body, one equation for continuity and two equations for momentum conservation, and (2) at the front, one equation for continuity and two equations for momentum conservation. We suppose the front to be a mobile jump, with longitudinal velocity varying more rapidly than transverse velocity.We solve these equations by a finite difference method. This involves many topological problems, due to the actual position of the front, which is defined by its intersection with the reference grid (SI, YJ). In the near future our two directions of research will be testing the code on actual avalanches and improving it by trying to make it cheaper without impairing its accuracy.


2021 ◽  
pp. 112889
Author(s):  
Junxing Meng ◽  
Yu Qiu ◽  
Chengyi Hou ◽  
Qinghong Zhang ◽  
Yaogang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document